【題目】已知函數(shù)
,
。
Ⅰ.求函數(shù)
的最小正周期和單調(diào)遞增區(qū)間;
Ⅱ.當(dāng)
時,方程
恰有兩個不同的實數(shù)根,求實數(shù)
的取值范圍;
Ⅲ.將函數(shù)
的圖象向右平移
個單位后所得函數(shù)
的圖象關(guān)于原點(diǎn)中心對稱,求
的最小值。
【答案】(1)遞增區(qū)間為
;(2)
;(3)
.
【解析】
(I)由條件利用余弦函數(shù)的周期性、單調(diào)性得出結(jié)論.
(Ⅱ)根據(jù)余弦函數(shù)的圖象,數(shù)形結(jié)合可得k的范圍.
(Ⅲ)由條件利用y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)的奇偶性,求得m的最小正值.
解:(1)因為
,所以函數(shù)
的最小正周期為
,
由
,得
,故函數(shù)
的遞增區(qū)間為
;
(Ⅱ)因為
在區(qū)間
上為增函數(shù),在區(qū)間
上為減函數(shù)
又
,
,
,
當(dāng)
時方程
恰有兩個不同實根.
(Ⅲ)![]()
![]()
由題意得
,
,![]()
當(dāng)
時,
,此時
關(guān)于原點(diǎn)中心對稱.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)工會利用“健步行
”開展明年健步走積分獎勵活動.會員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).為了解會員的健步走情況,工會在某天從系統(tǒng)中隨機(jī)抽取了1000名會員,統(tǒng)計了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為
,
,
,
,
,
,
,
,
九組,整理得到如下頻率分布直方圖:
![]()
(1)從當(dāng)天步數(shù)在
,
,
的會員中按分層抽樣的方式抽取6人,再從這6人中隨機(jī)抽取2人,求這2人積分之和不少于220分的概率;
(2)求該組數(shù)據(jù)的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在四棱錐
中,
平面
.
,
,
.點(diǎn)
是
與
的交點(diǎn),點(diǎn)
在線段
上且
.
![]()
(1)證明:
平面
;
(2)求直線
與平面
所成角的正弦值;
(3)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
.
(1)若函數(shù)
在
上單調(diào)遞增,求a的取值范圍;
(2)用反證法證明:函數(shù)
不可能為
上的單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計學(xué)中,經(jīng)常用環(huán)比、同比來進(jìn)行數(shù)據(jù)比較,環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期比較,如
年
月與
年
月相比,同比是指本期數(shù)據(jù)與歷史同時期比較,如
年
月與
年
月相比.
環(huán)比增長率
(本期數(shù)
上期數(shù))
上期數(shù)
,
同比增長率
(本期數(shù)
同期數(shù))
同期數(shù)
.
下表是某地區(qū)近
個月來的消費(fèi)者信心指數(shù)的統(tǒng)計數(shù)據(jù):
序號 |
|
|
|
|
|
|
|
|
時間 |
|
|
|
|
|
|
|
|
消費(fèi)者信心指數(shù) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017年
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![]()
求該地區(qū)
年
月消費(fèi)者信心指數(shù)的同比增長率(百分比形式下保留整數(shù));
除
年
月以外,該地區(qū)消費(fèi)者信心指數(shù)月環(huán)比增長率為負(fù)數(shù)的有幾個月?
由以上數(shù)據(jù)可判斷,序號
與該地區(qū)消費(fèi)者信心指數(shù)
具有線性相關(guān)關(guān)系,寫出
關(guān)于
的線性回歸方程
(
,
保留
位小數(shù)),并依此預(yù)測該地區(qū)
年
月的消費(fèi)者信心指數(shù)(結(jié)果保留
位小數(shù),參考數(shù)據(jù)與公式:
,
,
,
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=a-bcos
(b>0)的最大值為
,最小值為-
.
(1)求a,b的值;
(2)求函數(shù)g(x)=-4asin
的最小值并求出對應(yīng)x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=A1C=2,平面ACC1A1⊥平面ABC.現(xiàn)以邊AC的中點(diǎn)D為坐標(biāo)原點(diǎn),平面ABC內(nèi)垂直于AC的直線為
軸,直線AC為
軸,直線DA1為
軸建立空間直角坐標(biāo)系,解決以下問題:
(1)求異面直線AB與A1C所成角的余弦值;
(2)求直線AB與平面A1BC所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進(jìn)行教學(xué)實驗.為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.
分?jǐn)?shù) |
|
|
|
|
|
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 | 5 |
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面
列聯(lián)表,并判斷能否在犯錯概率不超過0.025的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
附:
,其中
.
臨界值表
| 0.10 | 0.05 | 0.025 |
| 2.706 | 3.841 | 5.024 |
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com