【題目】若存在實數(shù)
使得
則稱
是區(qū)間
的
一內(nèi)點.
(1)求證:
的充要條件是存在
使得
是區(qū)間
的
一內(nèi)點;
(2)若實數(shù)
滿足:
求證:存在
,使得
是區(qū)間
的
一內(nèi)點;
(3)給定實數(shù)
,若對于任意區(qū)間
,
是區(qū)間的
一內(nèi)點,
是區(qū)間的
一內(nèi)點,且不等式
和不等式
對于任意
都恒成立,求證:![]()
【答案】(1)證明過程見解析 (2)證明過程見解析 (3)證明過程見解析
【解析】
(1)先理解定義,再由已知證明
的充要條件是存在
使得
是區(qū)間
的
一內(nèi)點;
(2)用作差法判斷
的大小關(guān)系,得
,結(jié)合(1)即可得證;
(3)由已知可得
恒成立,由二次不等式恒成立問題可得
,且
,解得
,同理
,即可得解.
解:(1)①若
是區(qū)間
的
一內(nèi)點,
則存在實數(shù)
使得
,則
,
②若
,取
,則
,且
,
則
是區(qū)間
的
一內(nèi)點,
故
的充要條件是存在
使得
是區(qū)間
的
一內(nèi)點;
(2)由
,
,
則
,由(1)知,存在
,使得
是區(qū)間
的
一內(nèi)點;
(3)因為
是區(qū)間的
一內(nèi)點,則![]()
則
恒成立,
則
恒成立,
當
時,上式不可能恒成立,
因此
,
所以
,
即
,即
,
同理
,
故
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系
中,已知橢圓
的離心率為
,左、右焦點分別是
,以
為圓心以3為半徑的圓與以
為圓心以1為半徑的圓相交,且交點在橢圓
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)橢圓
,
為橢圓
上任意一點,過點
的直線
交橢圓
于
兩點,射線
交橢圓
于點
.
(i)求
的值;
(ⅱ)求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東海水晶制品廠去年的年產(chǎn)量為10萬件,每件水晶產(chǎn)品的銷售價格為100元,固定成本為80元.從今年起,工廠投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本.預(yù)計產(chǎn)量每年遞增1萬件,每件水晶產(chǎn)品的固定成本
與科技成本的投入次數(shù)
的關(guān)系是
=
.若水晶產(chǎn)品的銷售價格不變,第
次投入后的年利潤為
萬元.①求出
的表達式;②問從今年算起第幾年利潤最高?最高利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)設(shè)
,曲線
在點
處的切線在
軸上的截距為
,求
的最小值;
(Ⅱ)若
只有一個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點
到點
的距離比它到直線
距離小![]()
(Ⅰ)求點
的軌跡
的方程;
(Ⅱ)過點
作互相垂直的兩條直線
,它們與(Ⅰ)中軌跡
分別交于點
及點
,且
分別是線段
的中點,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
為兩個不同的平面,
,
為兩條不同的直線,有以下命題:
①若
,
,則
.②若
,
,則
.③若
,
,則
.④若
,
,
,則
.
其中真命題有()
A.①②B.①③C.②③D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率
與日產(chǎn)量
(萬件)之間滿足關(guān)系:
(
)已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.(注:次品率=次品數(shù)/生產(chǎn)量)
(1)試將生產(chǎn)這種儀器元件每天的盈利額
(萬元)表示為日產(chǎn)量
(萬件)的函數(shù);
(2)當日產(chǎn)量為多少時,可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,
.
當
時,求函數(shù)
的單調(diào)區(qū)間,并求出其極值;
若函數(shù)
存在兩個零點,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左焦點
,直線
與y軸交于點P.且與橢圓交于A,B兩點.A為橢圓的右頂點,B在x軸上的射影恰為
。
(1)求橢圓E的方程;
(2)M為橢圓E在第一象限部分上一點,直線MP與橢圓交于另一點N,若
,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com