已知函數(shù)f(x)=
+ln x(a≠0,a∈R).求函數(shù)f(x)的極值和單調(diào)區(qū)間.
的極小值為1;單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
。
解析試題分析:先求導(dǎo)并整理變形,再令導(dǎo)數(shù)等于0,并求根。討論導(dǎo)數(shù)的正負,導(dǎo)數(shù)大于0得增區(qū)間,導(dǎo)數(shù)小于0得減區(qū)間,根據(jù)單調(diào)性可得函數(shù)的極值。
因為
,
令
,得
,
又
的定義域為
,
,
隨x的變化情況如下表:![]()
所以
時,
的極小值為1.
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
.
考點:用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,
,其中
為實數(shù),若
在
上是單調(diào)減函數(shù),且
在
上有最小值,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)
的圖像過點
和
,直線
,直線
(其中
,
為常數(shù));若直線
與函數(shù)
的圖像以及直線
與函數(shù)
以及的圖像所圍成的封閉圖形如陰影所示.
(1)求
;
(2)求陰影面積
關(guān)于
的函數(shù)
的解析式;
(3)若過點
可作曲線
的三條切線,求實數(shù)
的取值范圍.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=xlnx-
x2.
(1)當a=1時,函數(shù)y=f(x)有幾個極值點?
(2)是否存在實數(shù)a,使函數(shù)f(x)=xlnx-
x2有兩個極值?若存在,求實數(shù)a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
R),
為其導(dǎo)函數(shù),且
時
有極小值
.
(1)求
的單調(diào)遞減區(qū)間;
(2)若
,
,當
時,對于任意x,
和
的值至少有一個是正數(shù),求實數(shù)m的取值范圍;
(3)若不等式
(
為正整數(shù))對任意正實數(shù)
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當
時,求函數(shù)
單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間[1,2]上的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
.
(1)若
,求曲線
在點
處的切線方程;
(2)若
求函數(shù)
的單調(diào)區(qū)間;
(3)若不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com