已知函數(shù)
滿足
,其中a>0,a≠1.
(1)對(duì)于函數(shù)
,當(dāng)x∈(-1,1)時(shí),f(1-m)+f(1-m2)<0,求實(shí)數(shù)m的取值集合;
(2)當(dāng)x∈(-∞,2)時(shí),![]()
的值為負(fù)數(shù),求
的取值范圍。
(1)![]()
(2)
且![]()
解析試題分析:解:設(shè)
,則
,所以,![]()
當(dāng)
時(shí),
是增函數(shù),
是減函數(shù)且
,所以
是增函數(shù),
同理,當(dāng)
時(shí),
也是增函數(shù)
又![]()
![]()
由
得:![]()
所以
,解得:![]()
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/24/4/6zwap1.png" style="vertical-align:middle;" />是增函數(shù),所以
時(shí),
,所以![]()
![]()
解得:
且![]()
考點(diǎn):函數(shù)單調(diào)性的運(yùn)用
點(diǎn)評(píng):主要是考查了函數(shù)單調(diào)性,以及函數(shù)的性質(zhì)的綜合運(yùn)用,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
滿足:
(
),
(1)用反證法證明:
不可能為正比例函數(shù);
(2)若
,求
的值,并用數(shù)學(xué)歸納法證明:對(duì)任意的
,均有:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
,其中
為常數(shù).
(Ⅰ)當(dāng)
時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(Ⅱ)當(dāng)
時(shí),求
的極值點(diǎn)并判斷是極大值還是極小值;
(Ⅲ)求證對(duì)任意不小于3的正整數(shù)
,不等式
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
,函數(shù)
的圖像在點(diǎn)
處的切線平行于
軸.
(1)求
的值;
(2)求函數(shù)
的極小值;
(3)設(shè)斜率為
的直線與函數(shù)
的圖象交于兩點(diǎn)
,(
)
證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(1)當(dāng)
且
時(shí),證明:對(duì)
,
;
(2)若
,且
存在單調(diào)遞減區(qū)間,求
的取值范圍;
(3)數(shù)列
,若存在常數(shù)
,
,都有
,則稱數(shù)列
有上界。已知
,試判斷數(shù)列
是否有上界.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
.
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)若
在區(qū)間
上是減函數(shù),求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com