【題目】若函數(shù)y=f(x)在區(qū)間D上是增函數(shù),且函數(shù)y=
在區(qū)間D上是減函數(shù),則稱函數(shù)f(x)是區(qū)間D上的“H函數(shù)”.對(duì)于命題:
①函數(shù)f(x)=-x+
是區(qū)間(0,1)上的“H函數(shù)”;
②函數(shù)g(x)=
是區(qū)間(0,1)上的“H函數(shù)”.下列判斷正確的是( )
A.
和
均為真命題 B.
為真命題,
為假命題
C.
為假命題,
為真命題 D.
和
均為假命題
【答案】C
【解析】
對(duì)于①,求得函數(shù)f(x)=-x+
的導(dǎo)數(shù),即可判斷單調(diào)性;
對(duì)于②,函數(shù)g(x)=
即為g(x)=
,考慮y=
-x在(0,1)上y>0,且遞減,可得g(x)的單調(diào)性,再由y=
在(0,1)的單調(diào)性,可判斷結(jié)論.
函數(shù)f(x)=-x+
的導(dǎo)數(shù)為f′(x)=-1+
,
可得f(x)在(0,
)遞增,在(
,1)遞減,不滿足新定義,
不是區(qū)間(0,1)上的“H函數(shù)”;
②函數(shù)g(x)=
即為g(x)=
,
由y=
-x在(0,1)上y>0,且遞減,
可得g(x)在(0,1)遞增;
又y=
=
在(0,1)遞增,
則g(x)是區(qū)間(0,1)上的“H函數(shù)”,
則①為假命題,②為真命題,
故選:C.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,若函數(shù)
的圖象關(guān)于直線x=-
對(duì)稱,且
.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)
在區(qū)間[-3,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.![]()
(1)求直方圖中a的值;
(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
)在區(qū)間(0,
)上至多取到兩次最大值,且在區(qū)間(
,
)上不單調(diào),則滿足條件的
的個(gè)數(shù)是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題中:
①命題:
;
②函數(shù)f(x)=2x﹣x2有三個(gè)零點(diǎn);
③對(duì)(x,y)∈{(x,y)|4x+3y﹣10=0},則x2+y2≥4.
④已知函數(shù)
,若△ABC中,角C是鈍角,那么f(sinA)>f(cosB)
其中所有真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知bsinA=3csinB,a=3,
.
(1)求b的值;
(2)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C:
過(guò)點(diǎn)M(2,0),且右焦點(diǎn)為F(1,0),過(guò)F的直線l與橢圓C相交于A、B兩點(diǎn).設(shè)點(diǎn)P(4,3),記PA、PB的斜率分別為k1和k2.
![]()
(1)求橢圓C的方程;
(2)如果直線l的斜率等于-1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的圖象與
軸的交點(diǎn)為
,它在
軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為
和
.
(1)求
解析式及
的值;
(2)求
的單調(diào)增區(qū)間;
(3)若
時(shí),函數(shù)
有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某算法的程序框圖如圖所示,若將輸出的(x,y)值依次記為(x1,y1),(x2,y2),…,(xn,yn),…
(1)若程序運(yùn)行中輸出的一個(gè)數(shù)組是(9,t),求t的值.
(2)程序結(jié)束時(shí),共輸出(x,y)的組數(shù)為多少?
(3)寫(xiě)出程序框圖的程序語(yǔ)句.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com