【題目】等差數列的定義可用數學符號語言描述為________,其中
,其通項公式
_________,
__________=_________,等差數列中,若
則________(
)
科目:高中數學 來源: 題型:
【題目】某少數民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數越多刺繡越漂亮.現按同樣的規律刺繡(小正方形的擺放規律相同),設第n個圖形包含f(n)個小正方形.
![]()
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據你得到的關系式求出f(n)的表達式;
(3)求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過拋物線
的焦點
的直線與拋物線交于
兩點,且
,拋物線的準線
與
軸交于
,
于點
,且四邊形
的面積為
,過
的直線
交拋物線于
兩點,且
,點
為線段
的垂直平分線與
軸的交點,則點
的橫坐標
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱
中,四邊形
為菱形,
,平面
平面
,
在線段
上移動,
為棱
的中點.
![]()
(1)若
為線段
的中點,
為
中點,延長
交
于
,求證:
平面
;
(2)若二面角
的平面角的余弦值為
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓
的左、右焦點為
,離心率為
,已知過
軸上一點
作一條直線
:
,交橢圓于
兩點,且
的周長最大值為8.
(1)求橢圓方程;
(2)以點
為圓心,半徑為
的圓的方程為
.過
的中點
作圓的切線
,
為切點,連接
,證明:當
取最大值時,點
在短軸上(不包括短軸端點及原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
圖象相鄰兩條對稱軸之間的距離為
,將函數
的圖象向左平移
個單位,得到的圖象關于
軸對稱,則( )
A. 函數
的周期為
B. 函數
圖象關于點
對稱
C. 函數
圖象關于直線
對稱 D. 函數
在
上單調
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的莖葉圖記錄了華潤萬家在渭南城區甲、乙連鎖店四天內銷售情況的某項指標統計:
![]()
(I)求甲、乙連鎖店這項指標的方差,并比較甲、乙該項指標的穩定性;
(Ⅱ)每次都從甲、乙兩店統計數據中隨機各選一個進行比對分析,共選了3次(有放回選取).設選取的兩個數據中甲的數據大于乙的數據的次數為
,求
的分布列及數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產某種型號的電視機零配件,為了預測今年
月份該型號電視機零配件的市場需求量,以合理安排生產,工廠對本年度
月份至
月份該型號電視機零配件的銷售量及銷售單價進行了調查,銷售單價
(單位:元)和銷售量
(單位:千件)之間的
組數據如下表所示:
月份 |
|
|
|
|
|
|
銷售單價 |
|
|
|
|
|
|
銷售量 |
|
|
|
|
|
|
(1)根據1至
月份的數據,求
關于
的線性回歸方程(系數精確到
);
(2)結合(1)中的線性回歸方程,假設該型號電視機零配件的生產成本為每件
元,那么工廠如何制定
月份的銷售單價,才能使該月利潤達到最大(計算結果精確到
)?
參考公式:回歸直線方程
,其中
.
參考數據:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com