【題目】如圖所示,四棱錐
的底面為矩形,已知
,
,過底面對角線
作與
平行的平面交
于
.
![]()
(1)試判定點
的位置,并加以證明;
(2)求二面角
的余弦值.
【答案】(1)
為
的中點,見解析(2) ![]()
【解析】試題分析:(1)由
平面
得到
,結合
為
的中點,即可得到答案;
(2)求出平面EAC的法向量和平面DAC的法向量,由此利用向量法能求出二面角
的平面角的余弦值.
試題解析:
(1)
為
的中點,證明如下:
連接
,因為
平面
,平面
平面
,
平面
,所以
,又
為
的中點,所以
為
的中點.
(2)連接
,因為四邊形
為矩形,所以
.因為
,所以
.同理,得
,所以
平面
,以
為原點,
為
軸,過
平行于
的直線為
軸,過
平行于
的直線為
軸建立空間直角坐標系(如圖所示).
易知
,
,
,
,
,
,
則
,
.
顯然,
是平面
的一個法向量.設
是平面
的一個法向量,
則
,即
,取
,
則
,
所以
,
所以二面角
的余弦值為
.
科目:高中數學 來源: 題型:
【題目】已知橢圓與拋物線y2=
x有一個相同的焦點,且該橢圓的離心率為
.
(1)求橢圓的標準方程;
(2)過點P(0,1)的直線與該橢圓交于A,B兩點,O為坐標原點,若
,求△AOB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線
ax+by=1與圓x2+y2=1相交于A,B兩點(其中a,b是實數),且△AOB是直角三角形(O是坐標原點),則點P(a,b)與點(0,1)之間距離的最小值為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加某次知識競賽測試的學生中隨機抽出60名學生,將其成績(百分制)(均為整數)分成六段
,
…
后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
![]()
(1)求分數在
內的頻率,并補全這個頻率分布直方圖;
(2)根據頻率分布直方圖,從圖中估計總體的眾數是多少分?中位數是多少分?
(3)統(tǒng)計方法中,同一組數據常用該組區(qū)間的中點值作為代表,據此估計本次考試的平均分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當m=-1時,求A∪B;
(2)若AB,求實數m的取值范圍;
(3)若A∩B=,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究機構為了了解各年齡層對高考改革方案的關注程度,隨機選取了200名年齡在
內的市民進行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為
,
,
,
,
,
).
![]()
(1)求選取的市民年齡在
內的人數;
(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人在座談會中作重點發(fā)言,求作重點發(fā)言的市民中至少有一人的年齡在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著網絡的發(fā)展,網上購物越來越受到人們的喜愛,各大購物網站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加.下表是某購物網站2017年1-8月促銷費用(萬元)和產品銷量(萬件)的具體數據.
![]()
(1)根據數據繪制的散點圖能夠看出可用線性回歸模型擬合
與
的關系,請用相關系數
加以說明;(系數精確到0.001)
(2)建立
關于
的回歸方程
(系數精確到0.01);如果該公司計劃在9月份實現產品銷量超6萬件,預測至少需投入促銷費用多少萬元(結果精確到0.01).
參考數據:
,
,
,
,
,其中
,
分別為第
個月的促銷費用和產品銷量,
.
參考公式:(1)樣本
的相關系數![]()
(2)對于一組數據
,
,
,
,其回歸方程
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是R上的奇函數,且當x>0時,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)畫出f(x)的圖像,并指出f(x)的單調區(qū)間.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com