【題目】(1)設直線l過點(2,3)且與直線2x+y+1=0垂直,l與x軸,y軸分別交于A、B兩點,求|AB|;
(2)求過點A(4,-1)且在x軸和y軸上的截距相等的直線l的方程.
【答案】(1)2
; (2)x+4y=0或x+y-3=0
【解析】
(1)由題意知直線l的斜率為
,設l的方程為x-2y+c=0,代入(2,3)可得c=4,即可求出A,B的坐標即可求出|AB|;
(2)分類討論:直線過原點時和直線不過原點,分別求出即可。
(1)由題意知直線l的斜率為
,設l的方程為x-2y+c=0,代入(2,3)可得c=4,
則x-2y+4=0,
令x=0,得y=2,令y=0,得x=-4,
∴A(-4,0),B(0,2),
則|AB|=
=2
;
(2)當直線不過原點時,設直線l的方程為x+y=c,代入(4,-1)可得c=3,此時方程為x+y-3=0,
當直線過原點時,此時方程為x+4y=0.
科目:高中數學 來源: 題型:
【題目】兩條平行直線和圓的位置關系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩條平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線
:
,
:
,和圓
相切,則
的取值范圍是( )
A.
或
B.
或![]()
C.
或
D.
或![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)已知過原點的動直線
與圓
相交于不同的兩點
,
.
(1)求圓
的圓心坐標;
(2)求線段
的中點
的軌跡
的方程;
(3)是否存在實數
,使得直線
與曲線
只有一個交點?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣
sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小波以游戲方式決定是參加學校合唱團還是參加學校排球隊,游戲規則為:以0為起點,再從A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8(如圖)這8個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數量積為X.若X=0就參加學校合唱團,否則就參加學校排球隊. ![]()
(1)求小波參加學校合唱團的概率;
(2)求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角坐標系
中,圓
與
軸負半軸交于點
,過點
的直線
,
分別與圓
交于
,
兩點.
![]()
(Ⅰ)若
,
,求
的面積;
(Ⅱ)若直線
過點
,證明:
為定值,并求此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形
所在的半平面和直角梯形
所在的半平面成
的二面角,
,
,
,
,
,
.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)試問在線段
上是否存在一點
,使銳二面角
的余弦值為
.若存在,請求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,直線
經過點
,其傾斜角為
,以原點
為極點,以
軸為非負半軸為極軸,與坐標系
取相同的長度單位,建立極坐標系.設曲線
的極坐標方程為
.
(1)若直線
與曲線
有公共點,求傾斜角
的取值范圍;
(2)設
為曲線
上任意一點,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com