設(shè)橢圓E:
+
=1(a>b>0)的上焦點(diǎn)是F1,過點(diǎn)P(3,4)和F1作直線PF1交橢圓于A,B兩點(diǎn),已知A(
,
).
(1)求橢圓E的方程;
(2)設(shè)點(diǎn)C是橢圓E上到直線PF1距離最遠(yuǎn)的點(diǎn),求C點(diǎn)的坐標(biāo).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
和動(dòng)圓
,直線:
與
和
分別有唯一的公共點(diǎn)
和
.
(Ⅰ)求
的取值范圍;
(Ⅱ)求
的最大值,并求此時(shí)圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
,直線
,動(dòng)點(diǎn)P到點(diǎn)F的距離與到直線
的距離相等.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;(2)直線
與曲線C交于A,B兩點(diǎn),若曲線C上存在點(diǎn)D使得四邊形FABD為平行四邊形,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
,直線
,動(dòng)點(diǎn)P到點(diǎn)F的距離與到直線
的距離相等.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)直線
與曲線C交于A,B兩點(diǎn),若曲線C上存在點(diǎn)D使得四邊形FABD為平行四邊形,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的兩焦點(diǎn)分別為
,長(zhǎng)軸長(zhǎng)為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長(zhǎng)度。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)過點(diǎn)A(1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程;
(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于
?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率
,
分別為橢圓的長(zhǎng)軸和短軸的端點(diǎn),
為
中點(diǎn),
為坐標(biāo)原點(diǎn),且
.
(1)求橢圓的方程;
(2)過點(diǎn)
的直線
交橢圓于
兩點(diǎn),求
面積最大時(shí),直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖5,
為坐標(biāo)原點(diǎn),雙曲線
和橢圓
均過點(diǎn)
,且以
的兩個(gè)頂點(diǎn)和
的兩個(gè)焦點(diǎn)為頂點(diǎn)的四邊形是面積為2的正方形.
(1)求
的方程;
(2)是否存在直線
,使得
與
交于
兩點(diǎn),與
只有一個(gè)公共點(diǎn),且
?證明你的結(jié)論.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
的兩個(gè)焦點(diǎn)為
、
點(diǎn)
在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為
求直線l的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com