已知函數(shù)
,
.
(Ⅰ)設(shè)
(其中
是
的導(dǎo)函數(shù)),求
的最大值;
(Ⅱ)求證:當(dāng)
時(shí),有
;
(Ⅲ)設(shè)
,當(dāng)
時(shí),不等式
恒成立,求
的最大值.
(Ⅰ)
取得最大值
;(Ⅱ)見(jiàn)解析;(Ⅲ)整數(shù)
的最大值是
.
解析試題分析:(Ⅰ)通過(guò)求
的導(dǎo)函數(shù)處理函數(shù)的單調(diào)性,從而確定在
時(shí),
取得最大值
;(Ⅱ)由(Ⅰ)可知當(dāng)
時(shí),
,從而有
.(Ⅲ)先由當(dāng)
時(shí),不等式
恒成立轉(zhuǎn)化為
對(duì)任意
恒成立,設(shè)
,通過(guò)導(dǎo)函數(shù)求出
的單調(diào)性從而得出
,整數(shù)
的最大值是
.
試題解析:(Ⅰ)
,
所以
.
當(dāng)
時(shí),
;當(dāng)
時(shí),
.
因此,
在
上單調(diào)遞增,在
上單調(diào)遞減.
因此,當(dāng)
時(shí),
取得最大值
; 3分
(Ⅱ)當(dāng)
時(shí),
.由(1)知:當(dāng)
時(shí),
,即
.
因此,有
. 7分
(Ⅲ)不等式
化為
所以
對(duì)任意
恒成立.令
,
則
,令![]()
,則
,
所以函數(shù)
在
上單調(diào)遞增.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cd/d/1ptdv2.png" style="vertical-align:middle;" />,
所以方程
在
上存在唯一實(shí)根
,且滿(mǎn)足
.
當(dāng)
,即
,當(dāng)
,即
,
所以函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增.
所以
.
所以
.故整數(shù)
的最大值是
. 13分
考點(diǎn):1.利用導(dǎo)數(shù)處理函數(shù)的單調(diào)性和最值;2.利用導(dǎo)數(shù)處理不等式恒成立問(wèn)題
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其中
,
.
(Ⅰ)若
的最小值為
,試判斷函數(shù)
的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(Ⅱ)若函數(shù)
的極小值大于零,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,某自來(lái)水公司要在公路兩側(cè)鋪設(shè)水管,公路為東西方向,在路北側(cè)沿直線鋪設(shè)線路l1,在路南側(cè)沿直線鋪設(shè)線路l2,現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線將l1與l2接通.已知AB = 60m,BC = 80m,公路兩側(cè)鋪設(shè)水管的費(fèi)用為每米1萬(wàn)元,穿過(guò)公路的EF部分鋪設(shè)水管的費(fèi)用為每米2萬(wàn)元,設(shè)∠EFB= α,矩形區(qū)域內(nèi)的鋪設(shè)水管的總費(fèi)用為W.![]()
(1)求W關(guān)于α的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某出版社新出版一本高考復(fù)習(xí)用書(shū),該書(shū)的成本為5元/本,經(jīng)銷(xiāo)過(guò)程中每本書(shū)需付給代理商m元(1≤m≤3)的勞務(wù)費(fèi),經(jīng)出版社研究決定,新書(shū)投放市場(chǎng)后定價(jià)為
元/本(9≤
≤11),預(yù)計(jì)一年的銷(xiāo)售量為
萬(wàn)本.
(1)求該出版社一年的利潤(rùn)
(萬(wàn)元)與每本書(shū)的定價(jià)
的函數(shù)關(guān)系式;
(2)當(dāng)每本書(shū)的定價(jià)為多少元時(shí),該出版社一年的利潤(rùn)
最大,并求出
的最大值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)當(dāng)
,
時(shí),求函數(shù)
的最大值;
(2)令
,其圖象上存在一點(diǎn)
,使此處切線的斜率
,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
,
時(shí),方程
有唯一實(shí)數(shù)解,求正數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,對(duì)定義域內(nèi)任意x,均有
恒成立,求實(shí)數(shù)a的取值范圍?
(Ⅲ)證明:對(duì)任意的正整數(shù)
,
恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
.
(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)
,
,
,
為函數(shù)
的圖象上任意不同兩點(diǎn),若過(guò)
,
兩點(diǎn)的直線
的斜率恒大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
,函數(shù)
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若
無(wú)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)若
有兩個(gè)相異零點(diǎn)
、
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
為奇函數(shù),求a的值;
(2)若函數(shù)
在
處取得極大值,求實(shí)數(shù)a的值;
(3)若
,求
在區(qū)間
上的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com