【題目】五一節(jié)期間,某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿(mǎn)100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤(pán)一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置, 指針落在區(qū)域的邊界時(shí),重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對(duì)應(yīng)的返劵金額見(jiàn)右下表.
![]()
![]()
例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費(fèi)后獲得
次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),已知他每轉(zhuǎn)一次轉(zhuǎn)盤(pán)指針落在區(qū)域邊界的概率為
,每次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的結(jié)果相互獨(dú)立,設(shè)
為顧客甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)指針落在區(qū)域邊界的次數(shù),
的數(shù)學(xué)期望
,方差
.求
、
的值;
(2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為
(元).求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
【答案】(1)
;(2)分布列見(jiàn)解析,
.
【解析】
試題分析:(1)依題意知,
服從二項(xiàng)分布
,由此可有
,
,聯(lián)立方程組解得
;(2)依題意可知,這是相互獨(dú)立事件,概率計(jì)算可用乘法. 設(shè)指針落在
區(qū)域分別記為事件
,則
.隨機(jī)變量
的可能值為
,利用獨(dú)立事件的概率計(jì)算公式,可求得分布列,進(jìn)而求得期望與方差.
試題解析:
(1)依題意知,
服從二項(xiàng)分布![]()
∴
又![]()
聯(lián)立解得:
(2)設(shè)指針落在A,B,C區(qū)域分別記為事件A,B,C. 則
.
由題意得,該顧客可轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)2次.
隨機(jī)變量
的可能值為0,30,60,90,120.
![]()
所以,隨機(jī)變量
的分布列為:
| 0 | 30 | 60 | 90 | 120 |
|
|
|
|
|
|
其數(shù)學(xué)期望
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng),男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)
的列聯(lián)表;
(2)是否有97.5%的把握認(rèn)為性別與休閑方式有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)國(guó)家號(hào)召,某地決定分批建設(shè)保障性住房供給社會(huì).首批計(jì)劃用100萬(wàn)元購(gòu)得一塊土地,該土地可以建造每層1 000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高20元.已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為800元.
(1)若建筑第x層樓時(shí),該樓房綜合費(fèi)用為y萬(wàn)元(綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和),寫(xiě)出y=f(x)的表達(dá)式;
(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出
盒該產(chǎn)品獲利潤(rùn)
元;未售出的產(chǎn)品,每盒虧損
元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了
盒該產(chǎn)品,以
(單位:盒,
)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn).
(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量
的中位數(shù);
(2)將
表示為
的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤(rùn)不少于
元的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
(x≥0)成等差數(shù)列.又?jǐn)?shù)列{an}(an>0)中,a1=3 ,此數(shù)列的前n項(xiàng)的和Sn(n∈N*)對(duì)所有大于1的正整數(shù)n都有Sn=f(Sn-1).
(1)求數(shù)列{an}的第n+1項(xiàng);
(2)若
是
,
的等比中項(xiàng),且Tn為{bn}的前n項(xiàng)和,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距
米,余下工程只需要建兩端橋墩之間的橋面和橋墩,經(jīng)預(yù)測(cè),一個(gè)橋墩的工程費(fèi)用為256萬(wàn)元,距離為
米的相鄰兩墩之間的橋面工程費(fèi)用為
萬(wàn)元。假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素,記余下工程的費(fèi)用為
萬(wàn)元. 假設(shè)需要新建n個(gè)橋墩.
(1)寫(xiě)出n關(guān)于
的函數(shù)關(guān)系式;
(2)試寫(xiě)出
關(guān)于
的函數(shù)關(guān)系式;
(3)當(dāng)
=640米時(shí),需新建多少個(gè)橋墩才能使
最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將銳角三角形繞其一邊旋轉(zhuǎn)一周所形成的空間幾何體是
A. 一個(gè)圓柱 B. 一個(gè)圓錐 C. 一個(gè)圓臺(tái) D. 兩個(gè)圓錐的組合體
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在區(qū)間[-1,4]上有最大值10和最小值1.設(shè)![]()
(1)求
的值;
(2)證明:函數(shù)
在
上是增函數(shù).
(3)若不等式![]()
在
上有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下面對(duì)幾何體結(jié)構(gòu)特征的描述,說(shuō)出幾何體的名稱(chēng).
(1)由8個(gè)面圍成,其中2個(gè)面是互相平行且全等的六邊形,其他各面都是平行四邊形.
(2)由5個(gè)面圍成,其中一個(gè)是正方形,其他各面都是有1個(gè)公共頂點(diǎn)的三角形.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com