【題目】如圖,在多面體
中,四邊形
為直角梯形,
,
,
,
,四邊形
為矩形.
![]()
(1)求證:平面
平面
;
(2)線段
上是否存在點(diǎn)
,使得二面角
的大小為
?若存在,確定點(diǎn)
的位置并加以證明.
【答案】(1)見解析(2)點(diǎn)
為線段
的中點(diǎn)
【解析】試題分析:(1)先根據(jù)勾股定理得
,再由矩形性質(zhì)得
,由線面垂直判定定理得
,最后根據(jù)面面垂直判定定理得結(jié)論 (2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解各平面法向量,根據(jù)向量數(shù)量積兩法向量夾角,最后根據(jù)二面角與向量夾角相等或互補(bǔ)關(guān)系求點(diǎn)
坐標(biāo),即得點(diǎn)
的位置
試題解析:(1)證明:由平面幾何的知識(shí),易得
,
,
又
,所以在
中,滿足
,所以
為直角三角形,且
.
因?yàn)樗倪呅?/span>
為矩形,
所以
.
由
,
,
,
可得
.
又
,
所以平面
平面
.
(2)存在點(diǎn)![]()
為大小為
,點(diǎn)
為線段
的中點(diǎn).
事實(shí)上,以
為原點(diǎn),
為
軸,
為
軸,過
作平面
的垂線為
軸,建立空間直角坐標(biāo)系
,
![]()
則
,
,
設(shè)
,由
,
即
,得
.
設(shè)平面
的一個(gè)法向量為
,
則
,即
,
不妨設(shè)
,取
.
平面
的一個(gè)法向量為
.
二面角
為大小為![]()
于是
.
解得
或
(舍去).
所以當(dāng)點(diǎn)
為線段
的中點(diǎn)時(shí),二面角
為大小為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為A,B,C所對邊,a+b=4,(2﹣cosA)tan
=sinA.
(1)求邊長c的值;
(2)若E為AB的中點(diǎn),求線段EC的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn)
,焦點(diǎn)
在
軸的正半軸上,過焦點(diǎn)
且斜率為
的直線
與拋物線交于
兩點(diǎn),且滿足
.
(1)求拋物線的方程;
(2)已知
為拋物線上一點(diǎn),若點(diǎn)
位于
軸下方且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來城市“共享單車”的投放在我國各地迅猛發(fā)展,“共享單車”為人們出行提供了很大的便利,但也給城市的管理帶來了一些困難,現(xiàn)某城市為了解人們對“共享單車”投放的認(rèn)可度,對
年齡段的人群隨機(jī)抽取
人進(jìn)行了一次“你是否贊成投放共享單車”的問卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組號 | 分組 | 贊成投放的人數(shù) | 贊成投放的人數(shù)占本組的頻率 |
第一組 |
|
|
|
第二組 |
|
|
|
第三組 |
|
|
|
第四組 |
|
|
|
第五組 |
|
|
|
第六組 |
|
|
|
![]()
(
)求
,
,
的值.
(
)在第四、五、六組“贊成投放共享單車”的人中,用分層抽樣的方法抽取
人參加“共享單車”騎車體驗(yàn)活動(dòng),求第四、五、六組應(yīng)分別抽取的人數(shù).
(
)在(
)中抽取的
人中隨機(jī)選派
人作為領(lǐng)隊(duì),求所選派的
人中第五組至少有一人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)R(x0 , y0)在D:y2=2px上,以R為切點(diǎn)的D的切線的斜率為
,過Γ外一點(diǎn)A(不在x軸上)作Γ的切線AB、AC,點(diǎn)B、C為切點(diǎn),作平行于BC的切線MN(切點(diǎn)為D),點(diǎn)M、N分別是與AB、AC的交點(diǎn)(如圖).![]()
(1)用B、C的縱坐標(biāo)s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過Γ外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試?yán)谩扒芯三角形”的面積和計(jì)算由拋物線及BC所圍成的陰影部分的面積T.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
的右焦點(diǎn)為
,右頂點(diǎn)為
,已知
,其中
為坐標(biāo)原點(diǎn),
為橢圓的離心率.
(1)求橢圓
的方程;
(2)是否存在斜率為2的直線
,使得當(dāng)直線
與橢圓
有兩個(gè)不同交點(diǎn)
時(shí),能在直線
上找到一點(diǎn)
,在橢圓
上找到一點(diǎn)
,滿足
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《城市規(guī)劃管理意見》中提出“新建住宅原則上不再建設(shè)封閉住宅小區(qū),已建成的住宅小區(qū)和單位大院逐步打開”,此消息在網(wǎng)上一石激起千層浪.各種說法不一而足,為了了解居民對“開放小區(qū)”認(rèn)同與否,從[25,55]歲人群中隨機(jī)抽取了n人進(jìn)行問卷調(diào)查,得如下數(shù)據(jù):
組數(shù) | 分組 | 認(rèn)同人數(shù) | 認(rèn)同人數(shù)占 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55) | 15 | 0.3 |
![]()
(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個(gè)年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽9人參與座談會(huì),然后從這9人中選2名作為組長,組長年齡在[40,45)內(nèi)的人數(shù)記為ξ,求隨機(jī)變量ξ的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時(shí)生產(chǎn)內(nèi)徑為
的一種零件,為了對兩人的生產(chǎn)質(zhì)量進(jìn)行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位:
) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質(zhì)量較高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)若函數(shù)f(x)在x=e處的切線與y軸相交于點(diǎn)(0,2﹣e),求a的值;
(2)當(dāng)1<x<2時(shí),求證:
>
﹣
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com