【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時,求證:
,并指出等號成立的條件;
(Ⅱ)求證:對任意實數(shù)
,總存在實數(shù)
,有
.
【答案】(Ⅰ)證明見解析;(Ⅱ)證明見解析
【解析】試題分析:
(Ⅰ)構(gòu)造新函數(shù)
,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性可得
,據(jù)此即可證得
.
(Ⅱ)原問題等價于
.然后分類討論當(dāng)
時和當(dāng)
時的情況即可證得題中的結(jié)論.
試題解析:
(Ⅰ)設(shè)
.
∵
,
∴當(dāng)
時,
,故
遞增;當(dāng)
時,
,故
遞減.
因此,
,即
,當(dāng)且僅當(dāng)
時等號成立.
(Ⅱ)解法一:“存在實數(shù)
,有
”等價于
.
注意到
.∵
,
∴當(dāng)
時,
,故
在
上單調(diào)遞增,從而
成立;
當(dāng)
時,令
,得
,∴
在
上遞減,在
上遞增
若
,即
時,
在
上遞增,故
成立;
若
,即
時,
在
上遞增,故
成立;
若
,即
時,
在
上遞減,在
上遞增,
故
成立.
綜上所述,對任意實數(shù)
,總存在實數(shù)
,有
.
解法二:①當(dāng)
時,
在區(qū)間
上遞增,則
,
②當(dāng)
時,由(Ⅰ)可知
;
③當(dāng)
時,由(Ⅰ)可知![]()
綜上,對任意實數(shù)
,總存在實數(shù)
,有
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
.
![]()
(1)若橢圓的離心率為
,且點(diǎn)
在橢圓上,①求橢圓的方程;
②設(shè)
分別為橢圓
的右頂點(diǎn)和上頂點(diǎn),直線
和
與
軸和
軸相交于點(diǎn)
,求直線
的方程;
(2)設(shè)
過
點(diǎn)的直線
與橢圓
交于
兩點(diǎn),且
均在
的右側(cè),
,求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在雙曲線
中,F(xiàn)1 , F2分別是左右焦點(diǎn),A1 , A2 , B1 , B2分別為雙曲線的實軸與虛軸端點(diǎn),若以A1A2為直徑的圓總在菱形F1B1F2B2的內(nèi)部,則此雙曲線
離心率的取值范圍是( )
A.![]()
B.[
,+∞)
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各小題中,P是q的充要條件的是(08年山東理改編)
1)p:m<﹣2或m>6;q:y=x2+mx+m+3有兩個不同的零點(diǎn).
2)p:
=1,q:y=f(x)是偶函數(shù).
3)p:cosα=cosβ,q:tanα=tanβ.
4)p:A∩B=A,q:CUBCUA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2|x﹣m|﹣1(m為實數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:32=52﹣42 , 52=132﹣122 , 72=252﹣242 , 92=412﹣402 , …照此規(guī)律,第n個等式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題
:實數(shù)
滿足
,其中
;命題
:實數(shù)
滿足
.
(1)若
,且
為真,求實數(shù)
的取值范圍;
(2)若
是
的充分不必要條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=
(a>0,b>0).
(1)當(dāng)a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)在(2)的條件下,試證明函數(shù)f(x)的單調(diào)性,并解不等式f(1﹣m)+f(1+m2)<0.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com