如圖,在正方形
中,
為坐標原點,點
的坐標為
,點
的坐標為
,分別將線段
和
十等分,分點分別記為
和
,連接
,過
作
軸的垂線與
交于點
。![]()
(Ⅰ)求證:點
都在同一條拋物線上,并求拋物線
的方程;
(Ⅱ)過點
作直線
與拋物線E交于不同的兩點
, 若
與
的面積之比為4:1,求直線
的方程。
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的離心率為
,直線
:
與以原點為圓心、以橢圓
的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設橢圓
的左焦點為
,右焦點
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,
線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(Ⅲ)設
與
軸交于點
,不同的兩點
在
上,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
若橢圓C:
的離心率e為
, 且橢圓C的一個焦點與拋物線y2=-12x的焦點重合.
(1) 求橢圓C的方程;
(2) 設點M(2,0), 點Q是橢圓上一點, 當|MQ|最小時, 試求點Q的坐標;
(3) 設P(m,0)為橢圓C長軸(含端點)上的一個動點, 過P點斜率為k的直線l交橢圓與
A,B兩點, 若|PA|2+|PB|2的值僅依賴于k而與m無關, 求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上,一個頂點為
,且其右焦點到直線
的距離為3.
(Ⅰ)求橢圓方程;
(Ⅱ)設直線過定點
,與橢圓交于兩個不同的點
,且滿足
.
求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
平面直角坐標系xOy中,過橢圓M:
右焦點的直線
交
于A,B兩點,P為AB的中點,且OP的斜率為
.
(Ι)求M的方程;
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形面積的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的焦距為
,離心率為
,其右焦點為
,過點
作直線交橢圓于另一點
.
(Ⅰ)若
,求
外接圓的方程;
(Ⅱ)若直線
與橢圓![]()
相交于兩點
、
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當AB中點為P時,求直線AB的方程;
(2)當AB中點在直線
上時,求直線AB的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com