【題目】已知
為拋物線
上一個(gè)動(dòng)點(diǎn),
為圓
上一個(gè)動(dòng)點(diǎn),那么點(diǎn)
到點(diǎn)
的距離與點(diǎn)
到拋物線的準(zhǔn)線距離之和的最小值是( )
A.
B.
C.
D. ![]()
【答案】A
【解析】![]()
由已知得,設(shè)圓心為
,因?yàn)閳A
,
拋物線
上一動(dòng)點(diǎn),
為拋物線的焦點(diǎn)
的最短距離為
,
,則當(dāng)
的直線經(jīng)過點(diǎn)
時(shí),
最小,則
,故選A.
【方法點(diǎn)晴】本題主要考查拋物線的標(biāo)準(zhǔn)方程和拋物線的簡單性質(zhì)及利用拋物線的定義求最值,屬于難題.與拋物線的定義有關(guān)的最值問題常常實(shí)現(xiàn)由點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離的轉(zhuǎn)化:(1)將拋物線上的點(diǎn)到準(zhǔn)線的距化為該點(diǎn)到焦點(diǎn)的距離,構(gòu)造出“兩點(diǎn)之間線段最短”,使問題得解;(2)將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,利用“點(diǎn)與直線上所有點(diǎn)的連線中垂線段最短”原理解決.本題是將
到準(zhǔn)線的距離轉(zhuǎn)化為到焦點(diǎn)的距離,再根據(jù)幾何意義解題的.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年1月1日,作為貴陽市打造“千園之城”27個(gè)示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項(xiàng)目向全體市民開放.現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
![]()
(1)根據(jù)條件完成下列
列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?
愿意 | 不愿意 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
(2)現(xiàn)用分層抽樣的方法從愿意接受挑戰(zhàn)的市民中選取7名挑戰(zhàn)者,再從中抽取2人參加挑戰(zhàn),求抽取的2人中至少有一名男生的概率.
參考數(shù)據(jù)及公式:
| 0.1 | 0.05 | 0.025 | 0.01 |
| 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)中,曲線
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標(biāo)方程.
(Ⅱ)求曲線
上的點(diǎn)到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2,3,4,乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球(左右手依次各取兩球?yàn)閮纱稳∏颍┑某晒θ》ù螖?shù)為隨機(jī)變量X,求X的分布列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2sin(x-
)-
,現(xiàn)將f(x)的圖象向左平移
個(gè)單位長度,再向上平移
個(gè)單位長度,得到函數(shù)g(x)的圖象.
(1)求f(
)+g(
)的值;
(2)若a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對邊,a+c=4,且當(dāng)x=B時(shí),g(x)取得最大值,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)?/span>(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù),且在定義域上單調(diào)遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
是半圓
的直徑,
,
是將半圓圓周四等分的三個(gè)分點(diǎn).
![]()
(1)從
這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;
(2)在半圓內(nèi)任取一點(diǎn)
,求
的面積大于
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的左焦點(diǎn)F為圓
的圓心,且橢圓C上的點(diǎn)到點(diǎn)F的距離最小值為
。
(I)求橢圓C的方程;
(II)已知經(jīng)過點(diǎn)F的動(dòng)直線
與橢圓C交于不同的兩點(diǎn)A、B,點(diǎn)M坐標(biāo)為(
),證明:
為定值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com