【題目】定義在
上的函數(shù)
滿足
,當(dāng)
時(shí),
,函數(shù)
.若對(duì)任意
,存在
,不等式
成立,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】對(duì)任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f(s)﹣g(t)≥0成立,
等價(jià)于:f(s)min≥g(t)min.
定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[0,2]時(shí),
,
令x∈[﹣4,﹣2),則(x+4)∈[0,2],
,
﹣4≤x<﹣3時(shí),
.
﹣3≤x<﹣2時(shí),
.
又![]()
可得f(x)min=﹣8.
函數(shù)g(x)=x3+3x2+m,x∈[﹣4,﹣2),
g′(x)=3x2+6x=3x(x+2)>0,∴函數(shù)g(x)在x∈[﹣4,﹣2)單調(diào)遞增,
∴g(x)min=g(﹣4)=﹣64+48+m=m﹣16,
由題意可得:﹣8≥m﹣16,解得m≤8.
∴實(shí)數(shù)m的取值范圍是(﹣∞,8]
故選:C.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,
,其中第一項(xiàng)是20,接下來(lái)的兩項(xiàng)是20,21,再接下來(lái)的三項(xiàng)是20,21,22,依此類推. 設(shè)該數(shù)列的前
項(xiàng)和為
,
規(guī)定:若
,使得
(
),則稱
為該數(shù)列的“佳冪數(shù)”.
(Ⅰ)將該數(shù)列的“佳冪數(shù)”從小到大排列,直接寫(xiě)出前3個(gè)“佳冪數(shù)”;
(Ⅱ)試判斷50是否為“佳冪數(shù)”,并說(shuō)明理由;
(III)(i)求滿足
>70的最小的“佳冪數(shù)”
;
(ii)證明:該數(shù)列的“佳冪數(shù)”有無(wú)數(shù)個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,底面
為矩形,側(cè)面
為正三角形,且平面
平面,
為
中點(diǎn),
.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)若二面角
的平面角大小
滿足
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,記
.
(1)求證:
在區(qū)間
內(nèi)有且僅有一個(gè)實(shí)數(shù);
(2)用
表示
中的最小值,設(shè)函數(shù)
,若方程
在區(qū)間
內(nèi)有兩個(gè)不相等的實(shí)根
,記
在
內(nèi)的實(shí)根為
.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
.
(1)解不等式
;
(2)若關(guān)于
的方程
的解集為空集,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
為常數(shù),設(shè)
為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)
時(shí),求
的最大值;
(2)若
在區(qū)間
上的最大值為
,求
的值;
(3)設(shè)
,若
,對(duì)于任意的兩個(gè)正實(shí)數(shù)
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面是菱形的四棱錐
中,
平面
,
,點(diǎn)
分別為
的中點(diǎn),設(shè)直線
與平面
交于點(diǎn)
.
![]()
(1)已知平面
平面
,求證:
.
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于
,它的一個(gè)頂點(diǎn)恰好是拋物線
的焦點(diǎn),
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)橢圓C的右焦點(diǎn)
作直線l交橢圓C于A、B兩點(diǎn),交y軸于M點(diǎn),若![]()
為定值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com