【題目】已知二次函數(shù)
在
處取得極值,且在
點處的切線與直線
平行.
(1)求
的解析式;
(2)求函數(shù)
的單調(diào)遞增區(qū)間及極值。
(3)求函數(shù)
在
的最值。
【答案】(1)
.
(2)增區(qū)間為
,
.在
有極小值為0。在
有極大值4/27。
(3)
的最大值為2,最小值為0。
【解析】試題分析:(1)第一步,求函數(shù)的導(dǎo)數(shù),第二步:根據(jù)
處取得極值,知
,根據(jù)導(dǎo)數(shù)的幾何意義知;在
處的導(dǎo)數(shù)等于
,解得
,第三步,代入寫出
,令
,得到極值點,最后,解出
;(2)根據(jù)(1)得到的結(jié)論,可知
上的單調(diào)性,以及極值,比較端點值和極值的大小,就得到最大值和最小值.
試題解析:解:(1) 由
,可得
.由題設(shè)可得![]()
即
.解得
,
.所以
.
由題意得![]()
所以
.
令
,得
,
.
當
變化時,
,
變化情況如下表:
|
|
|
|
|
|
|
|
|
|
|
|
| 單調(diào)遞增 | 4/27 | 單調(diào)遞減 | 0 | 單調(diào)遞增 |
>
所以函數(shù)
的單調(diào)遞增區(qū)間為
,
.
(2)因為在
時函數(shù)
有極小值為0.在
時函數(shù)
有極大值
.
又
,
所以函數(shù)
的最大值為2,最小值為0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)
上是減函數(shù),求實數(shù)a的最小值;
(Ⅲ)若
,
,使
成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的右焦點為
,且點
在橢圓
上.
⑴求橢圓
的標準方程;
⑵已知動直線
過點
且與橢圓
交于
兩點.試問
軸上是否存在定點
,使得
恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求曲線
在點
處的切線方程;
(2)若關(guān)于
的不等式
恒成立,求整數(shù)
的最小值;
(3)若正實數(shù)
滿足
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下五個命題:
①在線性回歸模型中,
表示解釋變量對于預(yù)報變量變化的貢獻率,在對女大學(xué)生的身高預(yù)報體重的回歸分析數(shù)據(jù)中,算得
,表明“女大學(xué)生的體重差異有64%是由身高引起的”
②隨機變量的方差和標準差都反映了隨機變量取值偏離于均值的平均程度,方差或標準差越小,則隨機變量偏離于均值的平均程度越大;
③正態(tài)曲線關(guān)于直線
對稱,這個曲線只有當
時,才在
軸上方;
④正態(tài)曲線的對稱軸由
確定,當
一定時,曲線的形狀由
決定,并且
越大,曲線越“矮胖”;
⑤若隨機變量
,且
則
;
其中正確命題的序號是
A. ②③ B. ①④⑤ C. ①④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的方程為
,雙曲線
的一條漸近線與
軸所成的夾角為
,且雙曲線的焦距為
.
![]()
(1)求橢圓
的方程;
(2)設(shè)
分別為橢圓
的左,右焦點,過
作直線
(與
軸不重合)交橢圓于
,
兩點,線段
的中點為
,記直線
的斜率為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆湖北省黃岡市高三上學(xué)期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將2至2017這2016個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列
,則此數(shù)列的項數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的焦距為
,且經(jīng)過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)
、
是橢圓
上兩點,線段
的垂直平分線
經(jīng)過
,求
面積的最大值(
為坐標原點).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com