【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.
![]()
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程;
(2)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為
,根據(jù)(1)中的結(jié)果回答下列問題:
①當(dāng)年宣傳費(fèi)為10萬元時,年銷售量及年利潤的預(yù)報值是多少?
②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.
附:回歸方程
中的斜率和截距的最小二乘估計公式分別為
![]()
參考數(shù)據(jù):
.
【答案】(1)
;(2)①銷售量為
,年利潤2.25;②該公司應(yīng)該投入5萬元宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.
【解析】
(1)由題所給數(shù)據(jù)及參考公式,計算出回歸方程;
(2)將(1)所得回歸方程代入函數(shù)式得到年利潤與年宣傳費(fèi)之間的函數(shù)關(guān)系,利用函數(shù)知識分析。
(3)年利潤與年宣傳費(fèi)的比值為
,求出
的解析式,利用基本不等式求最值。
(1)由題意
,
,![]()
![]()
![]()
(2)①由(1)得![]()
當(dāng)
時![]()
![]()
即當(dāng)年宣傳費(fèi)為10萬元時,年銷售量為
,年利潤的預(yù)報值為
。
②令年利潤與年宣傳費(fèi)的比值為
則![]()
![]()
![]()
當(dāng)且僅當(dāng)
即
時取最大值,故該公司應(yīng)該投入5萬元宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
圖象相鄰兩條對稱軸的距離為
,將函數(shù)
的圖象向左平移
個單位后,得到的圖象關(guān)于y軸對稱則函數(shù)
的圖象( )
A. 關(guān)于直線
對稱 B. 關(guān)于直線
對稱
C. 關(guān)于點
對稱 D. 關(guān)于點
對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的離心率為
,且過點![]()
求橢圓C的方程;
若過點
的直線與橢圓C相交于A,B兩點,設(shè)P點在直線
上,且滿足
為坐標(biāo)原點
,求實數(shù)t的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的離心率
,連接橢圓的四個頂點得到的菱形的面積為
.
![]()
求橢圓C的方程;
如圖所示,該橢圓C的左、右焦點
,
作兩條平行的直線分別交橢圓于A,B,C,D四個點,試求平行四邊形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照
分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的
的值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.
(3)估計居民月用水量的中位數(shù).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬果經(jīng)銷商銷售某種蔬果,售價為每公斤25元,成本為每公斤15元.銷售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷售.如果當(dāng)天賣不出去,未售出的全部降價以每公斤10元處理完.根據(jù)以往的銷售情況,得到如圖所示的頻率分布直方圖:
![]()
(1)根據(jù)頻率分布直方圖計算該種蔬果日需求量的平均數(shù)
(同一組中的數(shù)據(jù)用該組區(qū)間中點值代表);
(2)該經(jīng)銷商某天購進(jìn)了250公斤這種蔬果,假設(shè)當(dāng)天的需求量為
公斤
,利潤為
元.求
關(guān)于
的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計利潤
不小于1750元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場所.天壇公園中的圜丘臺共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在無窮數(shù)列
中,
是給定的正整數(shù),
,
.
(Ⅰ)若
,寫出
的值;
(Ⅱ)證明:數(shù)列
中存在值為
的項;
(Ⅲ)證明:若
互質(zhì),則數(shù)列
中必有無窮多項為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一長為100碼,寬為80碼,球門寬為8碼的矩形足球運(yùn)動場地,如圖所示,其中
是足球場地邊線所在的直線,球門
處于所在直線的正中間位置,足球運(yùn)動員(將其看做點
)在運(yùn)動場上觀察球門的角
稱為視角.
![]()
(1)當(dāng)運(yùn)動員帶球沿著邊線
奔跑時,設(shè)
到底線的距離為
碼,試求當(dāng)
為何值時
最大;
(2)理論研究和實踐經(jīng)驗表明:張角
越大,射門命中率就越大.現(xiàn)假定運(yùn)動員在球場都是沿著垂直于底線的方向向底線運(yùn)球,運(yùn)動到視角最大的位置即為最佳射門點,以
的中點為原點建立如圖所示的直角坐標(biāo)系,求在球場區(qū)域
內(nèi)射門到球門
的最佳射門點的軌跡.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com