【題目】選修4-4:坐標系與參數方程
極坐標系中,
為極點,半徑為2的圓
的圓心坐標為
.
(1)求圓
的極坐標方程;
(2)設直角坐標系的原點與極點
重合,
軸非負關軸與極軸重合,直線
的參數方程為
(
為參數),由直線
上的點向圓
引切線,求切線長的最小值.
科目:高中數學 來源: 題型:
【題目】如圖
,在直角梯形
中,
,
,
,點
是
邊的中點,將
沿
折起,使平面
平面
,連接
,
,
,得到如圖
所示的幾何體.
![]()
![]()
(Ⅰ)求證:
平面
.
(Ⅱ)若
,
與其在平面
內的正投影所成角的正切值為
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】田忌和齊王賽馬是歷史上有名的故事,設齊王的三匹馬分別為A、B、C,田忌的三匹馬分別為a、b、c.三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優劣程度可以用以下不等式表示:A>a>B>b>C>c. (Ⅰ)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;
(Ⅱ)為了得到更大的獲勝概率,田忌預先派出探子到齊王處打探實情,得知齊王第一場必出上等馬.那么,田忌應怎樣安排出馬的順序,才能使自己獲勝的概率最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足a3=7,a5+a7=26,數列{an}的前n項和為Sn .
(Ⅰ)求an;
(Ⅱ)設bn=
,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分16分)已知函數
在
處的切線方程為![]()
(1)若
=
,求證:曲線
上的任意一點處的切線與直線
和直線![]()
圍成的三角形面積為定值;
(2)若
,是否存在實數
,使得
對于定義域內的任意
都成立;
(3)在(2)的條件下,若方程
有三個解,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在的直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線的方程為x﹣2y﹣5=0.
(1)求直線BC的方程;
(2)求直線BC關于CM的對稱直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b是正實數,設函數f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)設h(x)=f(x)﹣g(x),求h(x)的單調區間;
(Ⅱ)若存在x0 , 使x0∈[
,
]且f(x0)≤g(x0)成立,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com