【題目】據(jù)統(tǒng)計(jì),某5家鮮花店今年4月的銷售額和利潤(rùn)額資料如下表:
鮮花店名稱 | A | B | C | D | E |
銷售額x(千元) | 3 | 5 | 6 | 7 | 9 |
利潤(rùn)額y(千元) | 2 | 3 | 3 | 4 | 5 |
(1)用最小二乘法計(jì)算利潤(rùn)額y關(guān)于銷售額x的回歸直線方程
=
x+
;
(2)如果某家鮮花店的銷售額為8千元時(shí),利用(1)的結(jié)論估計(jì)這家鮮花店的利潤(rùn)額是多少.
參考公式:回歸方程
中斜率和截距的最小二乘法估計(jì)值公式分別為![]()
【答案】(1)
=0.5x+0.4.(2)4.4千元.
【解析】
(1)根據(jù)回歸直線方程的計(jì)算方法,分別計(jì)算
,
以及
與
即可.
(2)代入
到(1)中所求得的回歸方程估算即可.
解:(1)設(shè)回歸直線方程是
=
x+
.
由題中的數(shù)據(jù)可知
=3.4,
=6.
∴![]()
![]()
,
=3.4-0.5×6=0.4,
∴利潤(rùn)額y關(guān)于銷售額x的回歸直線方程為
=0.5x+0.4.
(2)由(1)知,當(dāng)x=8時(shí),
=0.5×8+0.4=4.4,
即當(dāng)銷售額為8千萬元時(shí),可以估計(jì)該鮮花店的利潤(rùn)額為4.4千元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BE∥AF,BC∥AD,AF=AB=BC=2,AD=1.
(1)證明:在平面BCE上,一定存在過點(diǎn)C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在一個(gè)實(shí)數(shù)
,使得
成立,則稱
為函數(shù)
的一個(gè)不動(dòng)點(diǎn),設(shè)函數(shù)
(
,
為自然對(duì)數(shù)的底數(shù)),定義在
上的連續(xù)函數(shù)
滿足
,且當(dāng)
時(shí),
.若存在
,且
為函數(shù)
的一個(gè)不動(dòng)點(diǎn),則實(shí)數(shù)
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求
在
上的最小值;
(2)若關(guān)于
的不等式
只有兩個(gè)整數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果
的定義域?yàn)?/span>
,對(duì)于定義域內(nèi)的任意
,存在實(shí)數(shù)
使得
成立,則稱此函數(shù)具有“
性質(zhì)”.給出下列命題:
①函數(shù)
具有“
性質(zhì)”;
②若奇函數(shù)
具有“
性質(zhì)”,且
,則
;
③若函數(shù)
具有“
性質(zhì)”,圖象關(guān)于點(diǎn)
成中心對(duì)稱,且在
上單調(diào)遞減,則
在
上單調(diào)遞減,在
上單調(diào)遞增;
④若不恒為零的函數(shù)
同時(shí)具有“
性質(zhì)”和“
性質(zhì)”,且函數(shù)
對(duì)
,都有
成立,則函數(shù)
是周期函數(shù).
其中正確的是__________(寫出所有正確命題的編號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中裝有除顏色外其他均相同的編號(hào)為a,b的兩個(gè)黑球和編號(hào)為c,d,e的三個(gè)紅球,從中任意摸出兩個(gè)球.
(1)求恰好摸出1個(gè)黑球和1個(gè)紅球的概率:
(2)求至少摸出1個(gè)黑球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+1+|3-x|,x≥-1.
(1)求不等式f(x)≤6的解集;
(2)若f(x)的最小值為n,正數(shù)a,b滿足2nab=a+2b,求2a+b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某市11月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇11月1日至11月12日中的某一天到達(dá)該市,并停留3天.
![]()
(1)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(2)設(shè)X是此人停留期間空氣重度污染的天數(shù),求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
的公差
大于0,且
,
是方程
的兩根,數(shù)列
的前
項(xiàng)和為
,且
.
(1)求數(shù)列
、
的通項(xiàng)公式;
(2)設(shè)數(shù)列
的前
項(xiàng)和為
,試比較
與
的大小,并用數(shù)學(xué)歸納法給予證明.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com