如圖,在長(zhǎng)方體
,中,
,點(diǎn)
在棱AB上移動(dòng).![]()
(Ⅰ)證明:
;
(Ⅱ)當(dāng)
為
的中點(diǎn)時(shí),求點(diǎn)
到面
的距離;
(Ⅲ)
等于何值時(shí),二面角
的大小為
.
(Ⅰ)詳見(jiàn)解析;(Ⅱ)
;(Ⅲ)
.
解析試題分析:(Ⅰ)建立空間坐標(biāo),分別求出
的坐標(biāo),利用數(shù)量積等于零即可;(Ⅱ)當(dāng)
為
的中點(diǎn)時(shí),求點(diǎn)
到平面
的距離,只需找平面
的一條過(guò)
點(diǎn)的斜線段
在平面
的法向量上的投影即可;(Ⅲ)設(shè)
,因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/00/3/sc76u.png" style="vertical-align:middle;" />的一個(gè)法向量為
,只需求出平面
的法向量,然后利用二面角為
,根據(jù)夾角公式,求出
即可.
試題解析:以
為坐標(biāo)原點(diǎn),直線
分別為
軸,建立空間直角坐標(biāo)系,設(shè)
,則
,![]()
(Ⅰ)
,
,故
;
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ae/4/1b9t53.png" style="vertical-align:middle;" />為
的中點(diǎn),則
,從而
,
,設(shè)平面
的法向量為
,則
也即
,得
,從而
,所以點(diǎn)
到平面
的距離為
;
(Ⅲ)設(shè)平面
的法向量
, 而
, 由
,即
,得
,依題意得:
,
,解得
(不合,舍去),
∴
時(shí),二面角
的大小為
.
考點(diǎn):空間向量在立體幾何中應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,四棱錐P—ABCD中,AB
AD,CD
AD,PA
底面ABCD,PA=AD=CD=2AB=2,M為PC的中點(diǎn)。![]()
(1)求證:BM∥平面PAD;
(2)在側(cè)面PAD內(nèi)找一點(diǎn)N,使MN
平面PBD;
(3)求直線PC與平面PBD所成角的正弦。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°. ![]()
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,四邊形
為直角梯形,
,
,
為等邊三角形,且平面
平面
,
,
為
中點(diǎn).![]()
(1)求證:![]()
;
(2)求平面
與平面
所成的銳二面角的余弦值;
(3)在
內(nèi)是否存在一點(diǎn)
,使
平面
,如果存在,求
的長(zhǎng);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖在棱長(zhǎng)為1的正方體
中,M,N分別是線段
和BD上的點(diǎn),且AM=BN=![]()
![]()
(1)求|
|的最小值;
(2)當(dāng)|
|達(dá)到最小值時(shí),
與
,
是否都垂直,如果都垂直給出證明;如果不是都垂直,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長(zhǎng)為2的等邊三角形,AE=1,CD與平面ABDE所成角的正弦值為
.![]()
(Ⅰ)若F是線段CD的中點(diǎn),證明:EF⊥面DBC;
(Ⅱ)求二面角D-EC-B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(I)求證:A1C⊥平面BCDE;
(II)若M是A1D的中點(diǎn),求CM與平面A1BE所成角的大小;![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,
∠BCA=90°,棱AA1=2,M是A1B1的中點(diǎn).
(1)求cos(
,
)的值;
(2)求證:A1B⊥C1M.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱
中,
,
,
,點(diǎn)
是
的中點(diǎn).![]()
(1)求異面直線
與
所成角的余弦值;
(2)求平面
與平面
所成二面角的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com