【題目】已知函數f(x)=ax2-(a+2)x+ln x.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.
【答案】(1)y=-2.
(2)[1,+∞)
(3)[0,8]
【解析】(1)當a=1時,f(x)=x2-3x+ln x,f′(x)=2x-3+
.
因為f′(1)=0,f(1)=-2.
所以切線方程是y=-2.
(2)函數f(x)=ax2-(a+2)x+ln x的定義域是(0,+∞).
當a>0時,f′(x)=2ax-(a+2)+
=
(x>0),
令f′(x)=0,即f′(x)=![]()
=
=0,
所以x=
或x=
.
當0<
≤1,即a≥1時,f(x)在[1,e]上單調遞增,
所以f(x)在[1,e]上的最小值是f(1)=-2;
當1<
<e時,f(x)在[1,e]上的最小值是f
<f(1)=-2,不合題意;
當
≥e時,f(x)在(1,e)上單調遞減,
所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合題意.
綜上a的取值范圍是[1,+∞).
(3)設g(x)=f(x)+2x,則g(x)=ax2-ax+ln x,
只要g(x)在(0,+∞)上單調遞增即可.
而g′(x)=2ax-a+
=
,
當a=0時,g′(x)=
>0,此時g(x)在(0,+∞)上單調遞增;
當a≠0時,只需g′(x)≥0在(0,+∞)上恒成立,因為x∈(0,+∞),只要2ax2-ax+1≥0,則需要a>0,
對于函數y=2ax2-ax+1,過定點(0,1),對稱軸x=
>0,只需Δ=a2-8a≤0,
即0<a≤8.
綜上a的取值范圍是[0,8].
科目:高中數學 來源: 題型:
【題目】2016年10月28日,經歷了近半個世紀風雨的南京長江大橋真“累”了,終于停下來喘口氣了,之前大橋在改善我們城市的交通狀況方面功不可沒.據相關數據統計,一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數.當橋上的車流密度達到280輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過30輛/千米時,車流速度為50千米/小時.研究表明,當30≤x≤280時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤280時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時) f(x)=xv(x)可以達到最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知函數f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當0<a<1且t=﹣1時,解不等式f(x)≤g(x);
(3)若函數F(x)=af(x)+tx2﹣2t+1在區間(﹣1,2]上有零點,求t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發芽多少之間的關系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發芽數,得到如下資料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,求這2天發芽的種子數均不小于25的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數據,請根據這5天中的另三天的數據,求出
關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓C的中心在坐標原點,焦點在x軸上,該橢圓經過點
且離心率為
.
(1)求橢圓C的標準方程;
(2)若直線l:y=kx+m與橢圓C相交A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求證:直線l過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】兩圓x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三條公切線,若a∈R,b∈R,且ab≠0,則
的最小值為( )
A.![]()
B.![]()
C.1
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(﹣4,4)、B(4,4),直線AM與BM相交于點M,且直線AM的斜率與直線BM的斜率之差為﹣2,點M的軌跡為曲線C.
(1)求曲線C 的軌跡方程;
(2)Q為直線y=﹣1上的動點,過Q做曲線C的切線,切點分別為D、E,求△QDE的面積S的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com