在平面直角坐標系xOy中,已知橢圓C1:
=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
(1)
+y2=1; (2)y=
x+
或y=-
x-
.
解析試題分析:(1)由于橢圓的方程是標準方程,知其中心在坐標原點,對稱軸就是兩坐標軸,所以由已知可直接得到半焦距c及短半軸b的值,然后由
求得
的值,進而就可寫出橢圓的方程;(2)由已知得,直線l的斜率顯然存在且不等于0,故可設直線l的方程為y=kx+m,然后聯立直線方程與橢圓C1的方程,消去y得到關于x的一個一元二次方程,由直線l同時與橢圓C1相切知,其判別式等于零得到一個關于k,m的方程;再聯立直線l與拋物線C2的方程,消去y得到關于x的一個一元二次方程,由直線l同時與拋物線C2相切知,其判別式又等于零,再得到一個關于k,m的方程;和前一個方程聯立就可求出k,m的值,從而求得直線l的方程.
試題解析:(1)因為橢圓C1的左焦點為F1(-1,0),
所以c=1.將點P(0,1)代入橢圓方程
=1,
得
=1,即b=1. 所以a2=b2+c2=2.
所以橢圓C1的方程為
+y2=1.
(2)由題意可知,直線l的斜率顯然存在且不等于0,設直線l的方程為y=kx+m,由
消去y并整理得(1+2k2)x2+4kmx+2m2-2=0.
因為直線l與橢圓C1相切,
所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.
整理,得2k2-m2+1=0, ①
由
消y,得
k2x2+(2km-4)x+m2=0.
∵直線l與拋物線C2相切,
∴Δ2=(2km-4)2-4k2m2=0,整理,得km=1, ②
聯立①、②,得
或![]()
∴l的方程為y=
x+
或y=-
x-
.
考點:1.橢圓的方程;2.直線與圓錐曲線的位置關系.
科目:高中數學 來源: 題型:解答題
定義:我們把橢圓的焦距與長軸的長度之比即
,叫做橢圓的離心率.若兩個橢圓的離心率
相同,稱這兩個橢圓相似.
(1)判斷橢圓
與橢圓
是否相似?并說明理由;
(2)若橢圓![]()
與橢圓
相似,求
的值;
(3)設動直線
與(2)中的橢圓
交于
兩點,試探究:在橢圓
上是否存在異于
的定點
,使得直線
的斜率之積為定值?若存在,求出定點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓G:
經過橢圓
的右焦點F及上頂點B,過橢圓外一點(m,0)(
)傾斜角為
的直線L交橢圓與C、D兩點.
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內部,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓![]()
的離心率為
,其左焦點到點
的距離為
.
(1) 求橢圓
的標準方程;
(2) 若直線
與橢圓
相交于
兩點(
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點,求證:直線
過定點,并求出該定點的坐標.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知拋物線
:
,在此拋物線上一點![]()
到焦點的距離是3.
(1)求此拋物線的方程;
(2)拋物線
的準線與
軸交于
點,過
點斜率為
的直線
與拋物線
交于
、
兩點.是否存在這樣的
,使得拋物線
上總存在點
滿足
,若存在,求
的取值范圍;若不存在,說明理由.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com