【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cosB=
,tanC=
. (Ⅰ)求tanB和tanA;
(Ⅱ)若c=1,求△ABC的面積.
【答案】解:(Ⅰ)在△ABC中,∵cosB=
, ∴B為銳角,tanB=
,
又tanC=
,tan(B+C)=
=
=1,
∴tanA=tan[180°﹣(B+C)]=﹣tan(B+C),
∴tanA=﹣1.
(Ⅱ)因0°<A<180°,由(Ⅰ)結(jié)論可得:A=135°,
∴在△ABC中,B,C均為銳角
∵cosB=
,tanC=
,
∴sinB=
,sinC=
.
∴由
,得a=
,
故△ABC的面積為:S=
acsinB= ![]()
【解析】(Ⅰ)由已知利用同角三角函數(shù)基本關(guān)系式可求tanB的值,利用兩角和的正切函數(shù)公式可求tan(B+C),利用三角形內(nèi)角和定理,誘導(dǎo)公式即可得解tanA的值.(Ⅱ)結(jié)合范圍0°<A<180°,由(Ⅰ)可得A=135°,利用同角三角函數(shù)基本關(guān)系式可求cosB,sinB,sinC的值,利用正弦定理可求a,進(jìn)而利用三角形面積公式即可計算得解.
【考點精析】根據(jù)題目的已知條件,利用兩角和與差的正切公式和正弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握兩角和與差的正切公式:
;正弦定理:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=sin(4x﹣
)的圖象,只需將函數(shù)y=sin4x的圖象( )
A.向左平移
單位
B.向右平移
單位
C.向左平移
單位
D.向右平移
單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:﹣x2+4x+12≥0,q:x2﹣2x+1﹣m2≤0(m>0).
(Ⅰ)若p是q充分不必要條件,求實數(shù)m的取值范圍;
(Ⅱ)若“¬p”是“¬q”的充分條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
過
,
,且圓心在直線
上.
(Ⅰ)求此圓的方程.
(Ⅱ)求與直線
垂直且與圓相切的直線方程.
(Ⅲ)若點
為圓
上任意點,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在
上的偶函數(shù),且當(dāng)
時,
.現(xiàn)已畫出函數(shù)
在
軸左側(cè)的圖象,如圖所示,請根據(jù)圖象.
(
)寫出函數(shù)
的增區(qū)間.
(
)寫出函數(shù)
的解析式.
(
)若函數(shù)
,求函數(shù)
的最小值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
及點
.
(1)證明直線
過某定點,并求該定點的坐標(biāo);
(2)當(dāng)點
到直線
的距離最大時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線y2=2px(p>0)的焦點為F,已知點A,B為拋物線上的兩個動點,且滿足∠AFB=120°.過弦AB的中點M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:x0∈(0,+∞),3
+x0=2016,命題q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)為偶函數(shù),那么,下列命題為真命題的是( )
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,2),B(﹣3,﹣1),若圓x2+y2=r2(r>0)上恰有兩點M,N,使得△MAB和△NAB的面積均為5,則r的取值范圍是 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com