【題目】已知函數(shù)
,其中
為自然對(duì)數(shù)的底數(shù).
(Ⅰ)試判斷函數(shù)
的單調(diào)性;
(Ⅱ)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(Ⅰ)見解析; (Ⅱ) ![]()
【解析】
(Ⅰ)求出原函數(shù)的導(dǎo)函數(shù),然后對(duì)a分類,當(dāng)a≤0時(shí),
<0,f(x)為R上的減函數(shù);當(dāng)a>0時(shí),由導(dǎo)函數(shù)為0求得導(dǎo)函數(shù)的零點(diǎn),再由導(dǎo)函數(shù)的零點(diǎn)對(duì)定義域分段,根據(jù)導(dǎo)函數(shù)在各段內(nèi)的符號(hào)得到原函數(shù)的單調(diào)性;
(Ⅱ)分離參數(shù)t,可得
恒成立.令
,則問題等價(jià)于求解函數(shù)g(x)的最小值,然后利用導(dǎo)數(shù)分析求解函數(shù)g(x)的最小值得答案.
(Ⅰ)由題可得函數(shù)
的定義域?yàn)?/span>
,
,
當(dāng)
時(shí),因?yàn)?/span>
,所以
,所以函數(shù)
在
上單調(diào)遞減;
當(dāng)
時(shí),令
,解得
;令
,解得
,
所以函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增.
綜上,當(dāng)
時(shí),函數(shù)
在
上單調(diào)遞減;當(dāng)
時(shí),函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增.
(Ⅱ)當(dāng)
時(shí),
,
則不等式
可化為
,
因?yàn)椴坏仁?/span>
恒成立,所以原問題可轉(zhuǎn)化為
.
設(shè)
,顯然函數(shù)
的定義域?yàn)?/span>
,
,
令
,則
恒成立,
所以函數(shù)
在
上單調(diào)遞增,
又
,所以當(dāng)
時(shí),
;當(dāng)
時(shí),
,
所以函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,
所以
,所以
,
故實(shí)數(shù)
的取值范圍為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
,圓
,點(diǎn)
是圓上一動(dòng)點(diǎn),
的垂直平分線與
交于點(diǎn)
.
(1)求點(diǎn)
的軌跡方程;
(2)設(shè)點(diǎn)
的軌跡為曲線
,過點(diǎn)
且斜率不為0的直線
與
交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,證明直線
過定點(diǎn),并求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B兩點(diǎn)都在以PC為直徑的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的體積為
,則三棱錐P-ABC表面積為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從生產(chǎn)的一批產(chǎn)品中抽取200盒作為樣本,測(cè)量產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,該指標(biāo)值越高越好.由測(cè)量結(jié)果得到如下頻率分布直方圖:
![]()
(Ⅰ)求
,并試估計(jì)這200盒產(chǎn)品的該項(xiàng)指標(biāo)的平均值;
(Ⅱ)國(guó)家有關(guān)部門規(guī)定每盒產(chǎn)品該項(xiàng)指標(biāo)值不低于150均為合格,且按指標(biāo)值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個(gè)等級(jí),其中
為優(yōu)良,不高于185為合格,不低于215為優(yōu)秀.用樣本的該項(xiàng)質(zhì)量指標(biāo)值的頻率代替產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值的概率.
①求產(chǎn)品該項(xiàng)指標(biāo)值的優(yōu)秀率;
②現(xiàn)從這批產(chǎn)品中隨機(jī)抽取3盒,求其中至少有1盒該項(xiàng)質(zhì)量指標(biāo)值為優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,已知?jiǎng)又本
的參數(shù)方程:
,(
為參數(shù),
) ,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求曲線
的直角坐標(biāo)方程;
(Ⅱ)若直線
與曲線
恰好有2個(gè)公共點(diǎn)時(shí),求直線
的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:
,
得到如圖所示的頻率分布直方圖.
![]()
(Ⅰ)求
的值;
(Ⅱ)記
表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于80分”,估計(jì)
的概率;
(Ⅲ)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)?jiān)诖痤}卡上將
列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
參考公式及數(shù)據(jù):
,
.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)改革開放以來(lái)經(jīng)濟(jì)發(fā)展迅猛,某一線城市的城鎮(zhèn)居民2012~2018年人均可支配月收入散點(diǎn)圖如下(年份均用末位數(shù)字減1表示).
![]()
(1)由散點(diǎn)圖可知,人均可支配月收入y(萬(wàn)元)與年份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求y關(guān)于x的回歸方程(系數(shù)精確到0.001),依此相關(guān)關(guān)系預(yù)測(cè)2019年該城市人均可支配月收入;
(2)在2014~2018年的五個(gè)年份中隨機(jī)抽取兩個(gè)數(shù)據(jù)作樣本分析,求所取的兩個(gè)數(shù)據(jù)中,人均可支配月收入恰好有一個(gè)超過1萬(wàn)元的概率.
注:
,
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年新年伊始,新型冠狀病毒來(lái)勢(shì)洶洶,疫情使得各地學(xué)生在寒假結(jié)束之后無(wú)法返校,教育部就此提出了線上教學(xué)和遠(yuǎn)程教學(xué),停課不停學(xué)的要求也得到了家長(zhǎng)們的贊同.各地學(xué)校開展各式各樣的線上教學(xué),某地學(xué)校為了加強(qiáng)學(xué)生愛國(guó)教育,擬開設(shè)國(guó)學(xué)課,為了了解學(xué)生喜歡國(guó)學(xué)是否與性別有關(guān),該學(xué)校對(duì)100名學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡國(guó)學(xué) | 不喜歡國(guó)學(xué) | 合計(jì) | |
男生 | 20 | 50 | |
女生 | 10 | ||
合計(jì) | 100 |
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜歡國(guó)學(xué)與性別有關(guān)系?
(2)針對(duì)問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡國(guó)學(xué)的人中按分層抽樣的方法隨機(jī)抽取6人成立國(guó)學(xué)宣傳組,并在這6人中任選2人作為宣傳組的組長(zhǎng),設(shè)這兩人中女生人數(shù)為
,求
的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四位數(shù)
和
互為反序的正整數(shù),且
,
、
分別有16個(gè)、12個(gè)正因數(shù)(包括1和本身),
的質(zhì)因數(shù)也是
的質(zhì)因數(shù),但
的質(zhì)因數(shù)比
的質(zhì)因數(shù)少1個(gè),求
的所有可能值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com