【題目】服裝廠擬在2017年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)
萬(wàn)件與年促銷費(fèi)用
(
)萬(wàn)元滿足
.已知
年生產(chǎn)該產(chǎn)品的固定投入為
萬(wàn)元,每生產(chǎn)
萬(wàn)件該產(chǎn)品需要投入
萬(wàn)元.廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的
倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費(fèi)用).
(1)將2017年該產(chǎn)品的利潤(rùn)
萬(wàn)元表示為年促銷費(fèi)用
萬(wàn)元的函數(shù);
(2)該服裝廠2017年的促銷費(fèi)用投入多少萬(wàn)元時(shí),利潤(rùn)最大?
【答案】(1)
(
);(2)見(jiàn)解析
【解析】試題分析:
(1)由題意知:每件產(chǎn)品的銷售價(jià)格為
,即可表示出利潤(rùn)
關(guān)于促銷費(fèi)用
的函數(shù)關(guān)系式.
(2)由(1)中的函數(shù)關(guān)系式,利用基本不等式求最值,即可得出2017年促銷費(fèi)用多少時(shí),利潤(rùn)最大.
試題解析:
(1)由題意知:每件產(chǎn)品的銷售價(jià)格為![]()
所以
![]()
(
)
所以
(
)
(2)由
![]()
當(dāng)且僅當(dāng)
,即
時(shí)取等號(hào).
又![]()
當(dāng)
時(shí),當(dāng)
時(shí),
有最大值;
當(dāng)
時(shí),易證
關(guān)于
為增函數(shù),所以
時(shí),
有最大值;
答:當(dāng)
時(shí),該服裝廠2017年的促銷費(fèi)用投入
萬(wàn)元時(shí),利潤(rùn)最大;
當(dāng)
時(shí),該服裝廠2017年的促銷費(fèi)用投入
萬(wàn)元時(shí),利潤(rùn)最大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1,平行四邊形
中,
,
,現(xiàn)將
沿
折起,得到三棱錐
(如圖2),且
,點(diǎn)
為側(cè)棱
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求三棱錐
的體積;
(3)在
的角平分線上是否存在點(diǎn)
,使得
平面
?若存在,求
的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
,底面
是邊長(zhǎng)為2的菱形,
,且
平面
.
![]()
(1)證明:平面
平面
;
(2)若平面
與平面
的夾角為
,試求線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)設(shè)不等式
對(duì)滿足
的一切實(shí)數(shù)
的取值都成立,求
的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)
,使得不等式
對(duì)滿足
的一切實(shí)數(shù)
的取值都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
過(guò)點(diǎn)
,順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為
,點(diǎn)
.
(Ⅰ)求橢圓
的方程.
(Ⅱ)已知點(diǎn)
,是橢圓
上的兩點(diǎn).
(ⅰ)若
,且
為等邊三角形,求
的面積;
(ⅱ)若
,證明:
不可能為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國(guó)家對(duì)消費(fèi)者購(gòu)買新能源汽車給予補(bǔ)貼,其中對(duì)純電動(dòng)乘車補(bǔ)貼標(biāo)準(zhǔn)如下表:
![]()
某校研究性學(xué)習(xí)小組,從汽車市場(chǎng)上隨機(jī)選取了
輛純電動(dòng)乘用車,根據(jù)其續(xù)駛里程
(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計(jì)表:
![]()
(1)求
的值;
(2)若從這
輛純電動(dòng)乘用車中任選3輛,求選到的3輛車?yán)m(xù)駛里程都不低于180公里的概率;
(3)如果以頻率作為概率,若某家庭在某汽車銷售公司購(gòu)買了2輛純電動(dòng)乘用車,設(shè)該家庭獲得的補(bǔ)貼為
(單位:萬(wàn)元),求
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,點(diǎn)E為AB中點(diǎn).
(1)求證:BD1∥平面A1DE;
(2)求證:A1D⊥平面ABD1 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以點(diǎn)C(t,
) (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y﹣4=0與圓C交于點(diǎn)M、N,若OM=ON,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,四邊形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=
,且當(dāng)規(guī)定正視圖方向垂直平面ABCD時(shí),該幾何體的側(cè)視圖的面積為
.若M,N分別是線段DE、CE上的動(dòng)點(diǎn),則AM+MN+NB的最小值為 ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com