【題目】如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分別是A1B,B1C1的中點(diǎn).
(1)求證:MN⊥平面A1BC;
(2)求直線BC1和平面A1BC所成的角的大小.
![]()
【答案】(1)見解析;(2)![]()
【解析】試題分析:(1)易得BC⊥平面ACC1A1,連接AC1,則BC⊥AC1.側(cè)面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,根據(jù)線面垂直的判定定理可知AC1⊥平面A1BC,因?yàn)閭?cè)面ABB1A1是正方形,MN是△AB1C1的中位線,所以MN∥AC1,從而MN⊥平面A1BC;
(2)根據(jù)AC1⊥平面A1BC,設(shè)AC1與A1C相交于點(diǎn)D,連接BD,根據(jù)線面所成角的定義可知∠C1BD為直線BC1和平面A1BC所成角,設(shè)AC=BC=CC1=a,求出C1D,BC1,在Rt△BDC1中,求出∠C1BD,即可求出所求.
試題解析:
(1)證明 如圖,由已知BC⊥AC,BC⊥CC1,得BC⊥平面ACC1A1.連接AC1,則BC⊥AC1.
又側(cè)面ACC1A1是正方形,所以A1C⊥AC1.
又BC∩A1C=C,所以AC1⊥平面A1BC.
因?yàn)閭?cè)面ABB1A1是正方形,M是A1B的中點(diǎn),連接AB1,則點(diǎn)M是AB1的中點(diǎn).
又點(diǎn)N是B1C1的中點(diǎn),則MN是△AB1C1的中位線,所以MN∥AC1.故MN⊥平面A1BC.
(2)如圖所示,因?yàn)锳C1⊥平面A1BC,設(shè)AC1與A1C相交于點(diǎn)D,
![]()
連接BD,則∠C1BD為直線BC1和平面A1BC所成的角.
設(shè)AC=BC=CC1=a,則C1D=
a,BC1=
a.
在Rt△BDC1中,sin ∠C1BD=
=
,所以∠C1BD=30°,故直線BC1和平面A1BC所成的角為30°.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對任意給定的a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì): ⑴對任意a,b∈R,a*b=b*a;(2)對任意a∈R,a*0=a;(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.關(guān)于函數(shù)f(x)=(3x)*
的性質(zhì),有如下說法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(﹣∞,﹣
),(
,+∞).
其中所有正確說法的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)將函數(shù)
化成
的形式,并求函數(shù)
的增區(qū)間;
(2)若函數(shù)
滿足:對任意
都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱
中,底面
是邊長為2的正方形,
分別為線段
,
的中點(diǎn).
![]()
(1)求證:
||平面
;
(2)四棱柱
的外接球的表面積為
,求異面直線
與
所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,側(cè)面
底面
,側(cè)棱
,底面
為直角梯形,其中
為
中點(diǎn).
![]()
(1)求證:
平面
;
(2)求異面直線
與
所成角的余弦值;
(3)線段
上是否存在
,使得它到平面
的距離為
?若存在,求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分16分)某批發(fā)公司批發(fā)某商品,每件商品進(jìn)價(jià)80元,批發(fā)價(jià)120元,該批發(fā)商為鼓勵(lì)經(jīng)銷商批發(fā),決定當(dāng)一次批發(fā)量超過100個(gè)時(shí),每多批發(fā)一個(gè),批發(fā)的全部商品的單價(jià)就降低0.04元,但最低批發(fā)價(jià)不能低于102元.
(1)當(dāng)一次訂購量為多少個(gè)時(shí),每件商品的實(shí)際批發(fā)價(jià)為102元?
(2)當(dāng)一次訂購量為
個(gè), 每件商品的實(shí)際批發(fā)價(jià)為
元,寫出函數(shù)
的表達(dá)式;
(3)根據(jù)市場調(diào)查發(fā)現(xiàn),經(jīng)銷商一次最大定購量為
個(gè),則當(dāng)經(jīng)銷商一次批發(fā)多少個(gè)零件時(shí),該批發(fā)公司可獲得最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體
的底面
是邊長為2的菱形,
底面
,
,且
.
![]()
(1)證明:平面
平面
;
(2)若直線
與平面
所成的角為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=2018x+log2018x,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com