已知
是正數(shù)列組成的數(shù)列,
,且點
在函數(shù)
的圖像上,
(Ⅰ)求
的通項公式;
(Ⅱ)若數(shù)列
滿足
,
,求證:
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線
的方程為
,數(shù)列
滿足
,其前
項和為
,點
在直線
上.
(1)求數(shù)列
的通項公式;
(2)在
和
之間插入
個數(shù),使這
個數(shù)組成公差為
的等差數(shù)列,令
,試證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列
中,
,
,
對任意
成立,令
,且
是等比數(shù)列.
(1)求實數(shù)
的值;
(2)求數(shù)列
的通項公式;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是各項都為正數(shù)的等比數(shù)列,
是等差數(shù)列,且
,
,
.
(1)求數(shù)列
,
的通項公式;
(2)設(shè)數(shù)列
的前
項和為
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在等差數(shù)列{
}中,
=3,前7項和
=28.
(I)求數(shù)列{
}的公差d;
(II)若數(shù)列{
}為等比數(shù)列,且
,
求數(shù)列
的前n項和![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
的前三項依次為
、4、
,前
項和為
,且
.
(1)求
及
的值;
(2)設(shè)數(shù)列
的通項
,證明數(shù)列
是等差數(shù)列,并求其前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知無窮數(shù)列
中,
、
、
、
構(gòu)成首項為2,公差為-2的等差數(shù)列,
、
、
、
,構(gòu)成首項為
,公比為
的等比數(shù)列,其中
,
.
(1)當(dāng)
,
,時,求數(shù)列
的通項公式;
(2)若對任意的
,都有
成立.
①當(dāng)
時,求
的值;
②記數(shù)列
的前
項和為
.判斷是否存在
,使得
成立?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
為數(shù)列
的前
項和,對任意的
,都有
(
為正常數(shù)).
(1)求證:數(shù)列
是等比數(shù)列;
(2)數(shù)列
滿足
求數(shù)列
的通項公式;
(3)在滿足(2)的條件下,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的前n項的和記為Sn.如果
,![]()
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最小值及其相應(yīng)的n的值;
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com