【題目】實驗探究:
(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數是多少,并證明你的結論.
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數量關系,寫出折疊方案,并結合方案證明你的結論.
![]()
【答案】(1)猜想:∠MBN=30°,理由見解析;(2)結論:MN=
BM.折紙方案及證明見解析.
【解析】試題分析:(1)猜想:∠MBN=30°.只要證明△ABN是等邊三角形即可;
(2)結論:MN=
BM.折紙方案:如圖,折疊△BMN,使得點N落在BM上O處,折痕為MP,連接OP.由折疊可知△MOP≌△MNP,只要證明△MOP≌△BOP,即可推出MO=BO=
BM;
試題解析:(1)猜想:∠MBN=30°.
理由:如圖1中,連接AN,∵直線EF是AB的垂直平分線,
∴NA=NB,
由折疊可知,BN=AB,
∴AB=BN=AN,
∴△ABN是等邊三角形,
∴∠ABN=60°,
∴NBM=∠ABM=
∠ABN=30°.
(2)結論:MN=
BM.
折紙方案:如圖2中,折疊△BMN,使得點N落在BM上O處,折痕為MP,連接OP.
理由:由折疊可知△MOP≌△MNP,
∴MN=OM,∠OMP=∠NMP=
∠OMN=30°=∠B,
∠MOP=∠MNP=90°,
∴∠BOP=∠MOP=90°,
∵OP=OP,
∴△MOP≌△BOP,
∴MO=BO=
BM,
∴MN=
BM.
![]()
科目:初中數學 來源: 題型:
【題目】(本小題滿分8分)
閱讀材料:
如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為P.
求證:S四邊形ABCD=![]()
證明:AC⊥BD→![]()
∴S四邊形ABCD=S△ACD+S△ACB= ![]()
=![]()
解答問題:
(1)上述證明得到的性質可敘述為_______________________________________.
(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對角線AC⊥BD且相交于點P,AD=3cm,BC=7cm,利用上述的性質求梯形的面積.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A(-5,0),B(-3,0),點C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點P從點Q(4,0)出發,沿x軸向左以每秒1個單位長度的速度運動,運動時時間t秒.![]()
(1)求點C的坐標;
(2)當∠BCP=15°時,求t的值;
(3)以點P為圓心,PC為半徑的⊙P隨點P的運動而變化,當⊙P與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近年來霧霾天氣給人們的生活帶來很大影響,空氣質量問題倍受人們關注.某單位計劃在室內安裝空氣凈化裝置,需購進A、B兩種設備.每臺B種設備價格比每臺A種設備價格多0.7萬元,花3萬元購買A種設備和花7.2萬元購買B種設備的數量相同.
(1)求A種、B種設備每臺各多少萬元?
(2)根據單位實際情況,需購進A、B兩種設備共20臺,總費用不高于15萬元,求A種設備至少要購買多少臺?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某實驗學校準備在“十一”黃金周組織部分教師到陜西安康旅游,現聯系了甲、乙兩旅行社,兩家旅行社報價均為400元/人,同時兩旅行社對10人以上的團體推出了優惠舉措:甲旅行社對每位游客七五折優惠;乙旅行社是免去一位帶隊老師的費用,其余的八折優惠①求人數為多少時,兩家旅行社的收費相同?②請你通過計算說明:旅游人數在什么范圍時選擇甲旅行社費用較少?旅游人數在什么范圍時選擇乙旅行社的費用較少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com