【題目】如圖,“中國海監50”正在南海海域A處巡邏,島礁B上的中國海軍發現點A在點B的正西方向上,島礁C上的中國海軍發現點A在點C的南偏東30°方向上,已知點C在點B的北偏西60°方向上,且B、C兩地相距120海里.![]()
(1)求出此時點A到島礁C的距離;
(2)若“中海監50”從A處沿AC方向向島礁C駛去,當到達點A′時,測得點B在A′的南偏東75°的方向上,求此時“中國海監50”的航行距離.(注:結果保留根號)
【答案】
(1)
解:如圖所示:
![]()
延長BA,過點C作CD⊥BA延長線與點D,
由題意可得:∠CBD=30°,BC=120海里,
則DC=60海里,
故cos30°=
=
=
,
解得:AC=40
,
答:點A到島礁C的距離為40
海里
(2)
解:如圖所示:
![]()
過點A′作A′N⊥BC于點N,
可得∠1=30°,∠BA′A=45°,A′N=A′E,
則∠2=15°,即A′B平分∠CBA,
設AA′=x,則A′E=
x,
故CA′=2A′N=2×
x=
x,
∵
x+x=40
,
∴解得:x=60﹣20
,
答:此時“中國海監50”的航行距離為(60﹣20
)海里.
【解析】(1)根據題意得出:∠CBD=30°,BC=120海里,再利用cos30°=
,進而求出答案;(2)根據題意結合已知得出當點B在A′的南偏東75°的方向上,則A′B平分∠CBA,進而得出等式求出答案.
科目:初中數學 來源: 題型:
【題目】某校志愿者團隊在重陽節購買了一批牛奶到“夕陽紅”敬老院慰問孤寡老人,如果給每個老人分5盒,則剩下38盒,如果給每個老人分6盒,則最后一個老人不足5盒,但至少分得一盒.
(1)設敬老院有x名老人,則這批牛奶共有多少盒?(用含x的代數式表示).
(2)該敬老院至少有多少名老人?最多有多少名老人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列一組圖形,其中圖形①中共有2顆星,圖形②中共有6顆星,圖形③中共有11顆星,圖形④中共有17顆星,…,按此規律,圖形⑧中星星的顆數是( )![]()
A.43
B.45
C.51
D.53
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,E為BC中點,兩個動點M和N分別在邊CD和AD上運動且MN=1,若△ABE與以D、M、N為頂點的三角形相似,則DM= . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中秋佳節我國有賞月和吃月餅的傳統,某校數學興趣小組為了了解本校學生喜愛月餅的情況,隨機抽取了60名同學進行問卷調查,經過統計后繪制了兩幅尚不完整的統計圖. ![]()
(注:參與問卷調查的每一位同學在任何一種分類統計中只有一種選擇)
請根據統計圖完成下列問題:
(1)扇形統計圖中,“很喜歡”的部分所對應的圓心角為度; 條形統計圖中,喜歡“豆沙”月餅的學生有人;
(2)若該校共有學生900人,請根據上述調查結果,估計該校學生中“很喜歡”和“比較喜歡”月餅的共有人.
(3)甲同學最愛吃云腿月餅,乙同學最愛吃豆沙月餅,現有重量、包裝完全一樣的云腿、豆沙、蓮蓉、蛋黃四種月餅各一個,讓甲、乙每人各選一個,請用畫樹狀圖法或列表法,求出甲、乙兩人中有且只有一人選中自己最愛吃的月餅的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,BC>AB,∠BAD的平分線AF與BD、BC分別交于點E、F,點O是BD的中點,直線OK∥AF,交AD于點K,交BC于點G.![]()
(1)求證:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=4﹣
.
①求KD的長度;
②如圖2,點P是線段KD上的動點(不與點D、K重合),PM∥DG交KG于點M,PN∥KG交DG于點N,設PD=m,當S△PMN=
時,求m的值.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別是可活動的菱形和平行四邊形學具,已知平行四邊形較短的邊與菱形的邊長相等.![]()
(1)在一次數學活動中,某小組學生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經過點C,連接DE交AF于點M,觀察發現:點M是DE的中點.
下面是兩位學生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求
的值;
(3)在(2)的條件下,若
=k(k為大于
的常數),直接用含k的代數式表示
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=4,點D,E分別在AC,BC上(點D與點A,C不重合),且∠DEC=∠A,將△DCE繞點D逆時針旋轉90°得到△DC′E′.當△DC′E′的斜邊、直角邊與AB分別相交于點P,Q(點P與點Q不重合)時,設CD=x,PQ=y. ![]()
(1)求證:∠ADP=∠DEC;
(2)求y關于x的函數解析式,并直接寫出自變量x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com