【題目】某天早上,一輛交通巡邏車從A地出發(fā),在東西向的馬路上巡視,中午到達B地,如果規(guī)定向東行駛為正,向西行駛為負,行駛紀錄如下:(單位:km)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
+15 | -8 | +6 | +12 | -4 | +5 | -10 |
(1)B地在A地哪個方向,與A地相距多少千米?
(2)巡邏車在巡邏過程中,離開A地最遠是多少千米?
(3)若每km耗油0.1升,問共耗油多少升?
【答案】(1)在A點正東16km處;(2)離A最遠26km;(3)6L.
【解析】
(1)根據有理數的加法運算,可得正數或負數,根據向東記為正,向西記為負,可得答案;
(2)根據有理數的加法運算,分別計算出每次距A地的距離,可得離A地最遠距離;
(3)根據行車就耗油,可得耗油量.
(1)158+6+124+510=16(千米),
答:B地在A地東方,與A地相距16千米;
(2)第一次局A地:15千米,第二次距A地:158=7千米,第三次距A地:7+6=13千米,第四次距A地:13+12=25千米,第五次距A地:254=21千米,第六次距A地:21+5=26第七次距A地:2610=16,
∵26>25>21>16>15>13>7,
答:巡邏車在巡邏過程中,離開A地最遠是26千米;
(3)
(升),
答:若每km耗油0.1升,問共耗油6升.
科目:初中數學 來源: 題型:
【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現:銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系: ![]()
(1)求出y與x之間的函數關系式;
(2)寫出每天的利潤W與銷售單價x之間的函數關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】概念學習
規(guī)定:求若干個相同的有理數(均不等于0)的除法運算叫做除方,例如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”,一般地,把
(a≠0)記作
a
,讀作“a的圈n次方”.
初步探究
(1)直接寫出計算結果:2③=________,
=________;
(2)關于除方,下列說法錯誤的是________
A.任何非零數的圈2次方都等于1; B.對于任何正整數n,1
=1;
C.3④=4③ ; D.負數的圈奇數次方結果是負數,負數的圈偶數次方結果是正數.
深入思考
我們知道,有理數的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數的除方運算如何轉化為乘方運算呢?
![]()
(1)試一試:仿照上面的算式,將下列運算結果直接寫成冪的形式.
(﹣3)④=________;5⑥=________;
=________.
(2)想一想:將一個非零有理數a的圈n次方寫成冪的形式等于________;
(3)算一算:24÷23+(-16)×2④.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠倉庫儲存了部分原料,按原計劃每時消耗2 t,可用60 h.由于技術革新,實際生產能力有所提高,即每時消耗的原料量大于計劃消耗的原料量.設現在每時消耗原料x(單位:t),庫存的原料可使用的時間為y(單位:h).
(1)寫出y關于x的函數解析式,并求出自變量的取值范圍;
(2)若恰好經過24 h才有新的原料進廠,為了使機器不停止運轉,則x應控制在什么范圍內?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在平面直角坐標系中,網格中每一個小正方形的邊長為1個單位長度;已知△ABC. ![]()
(1)作出△ABC以O為旋轉中心,順時針旋轉90°的△A1B1C1 , (只畫出圖形).
(2)作出△ABC關于原點O成中心對稱的△A2B2C2 , (只畫出圖形),寫出B2和C2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數y=
(x>0)的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數的解析式;
(2)根據圖象直接寫出kx+b-
<0時x的取值范圍;
(3)求△AOB的面積.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(中考·安徽)如圖,已知反比例函數y=
與一次函數y=k2x+b的圖象交于A(1,8),B(-4,m).
(1)求k1,k2,b的值;
(2)求△AOB的面積;
(3)若M(x1,y1),N(x2,y2)是反比例函數y=
的圖象上的兩點,且x1<x2,y1<y2,指出點M,N位于哪個象限,并簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)求證:AB=AC;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設點M運動的時間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com