【題目】如圖:在
中,
,
,
,點
、
同時由
、
兩點分別沿
、
方向向點
勻速移動,它們的速度都是
,設
秒后
的面積為
面積的一半.則方程(一般形式)為:________.
![]()
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1=∠2,則下列條件中不一定能使△ABC≌△ABD的是( )
![]()
A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖,在下列代數式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個數為( )
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某網絡公司推出了一系列上網包月業務,其中的一項業務是10M40元包240小時,且其中每月收取費用y(元)與上網時間x(小時)的函數關系如圖所示,小剛和小明家正好選擇了這項上網業務.
(1)當x≥240時,求y與x之間的函數關系式;
(2)若小剛家10月份上網200小時,則他家應付多少元上網費?
(3)若小明家10月份上網費用為62元,則他家該月的上網時間是多少小時?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,
中,
,
,
.
![]()
點
從點
開始沿
邊向
以
的速度移動,點
從
點開始沿
邊向點
以
的速度移動.如果
、
分別從
,
同時出發,線段
能否將
分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
若
點沿射線
方向從
點出發以
的速度移動,點
沿射線
方向從
點出發以
的速度移動,
、
同時出發,問幾秒后,
的面積為
?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.
![]()
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.
(2)問題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求
的值.
(3)應用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC的
倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l2于點D.求CD的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點G,交BE于點H,下面說法中正確的序號是_____.
①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=5,AD是BC邊上的中線,且AD=2,延長AD到點E,使DE=AD,連接CE.
(1)求證:△AEC是直角三角形.
(2)求BC邊的長.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com