【題目】用兩種方法證明“三角形的外角和等于360°”.
已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個外角.
求證:∠BAE+∠CBF+∠ACD=360°.
證法1:∵________________________________________________________________,
∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,
∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).
∵______________,
∴∠BAE+∠CBF+∠ACD=540°-180°=360°.
請把證法1補充完整,并用不同的方法完成證法2.
![]()
【答案】見解析
【解析】
試題證法1:根據平角的定義得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根據三角形內角和定理和角的和差關系即可得到結論;
證法2:要求證∠BAE+∠CBF+∠ACD=360°,根據三角形外角性質得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,則∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根據三角形內角和定理即可得到結論.
試題解析:證法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).
∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.
證法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.
科目:初中數學 來源: 題型:
【題目】下列結論正確的是( )
A.x2﹣2是二次二項式
B.單項式﹣x2的系數是1
C.使式子
有意義的x的取值范圍是x>﹣2
D.若分式
的值等于0,則a=±1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的半徑為1,A、P、B、C是⊙O上的四個點,∠APC=∠CPB=60°. ![]()
(1)判斷△ABC的形狀:;
(2)試探究線段PA、PB、PC之間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分線.
![]()
(1)求∠DAE的度數;
(2)寫出以AD為高的所有三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,AB=6,BC=9,將△ABC折疊,使點C與AB的中點D重合,折痕交AC于點M,交BC于點N.
(1)求線段BN的長;
(2)連接CD,與MN交于點E,寫出與點E相關的兩個正確結論:① ;
② .
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC.作射線AP,過點B作BD⊥AP于點D,連接CD.
(1)當射線AP位于圖1所示的位置時
①根據題意補全圖形;
②求證:AD+BD=
CD.
(2)當射線AP繞點A由圖1的位置順時針旋轉至∠BAC的內部,如圖2,直接寫出此時AD,BD,CD三條線段之間的數量關系為 .
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知AD∥BC,AB∥EF,CD∥EG,且點E在直線AD上,點F,H,G在直線BC上,EH平分∠FEG,∠A=∠D=110°,線段EH的長是不是兩條平行線AD,BC之間的距離?為什么?
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com