【題目】如圖1,拋物線(xiàn)
,其中
,點(diǎn)A(-2,m)在該拋物線(xiàn)上,過(guò)點(diǎn)A作直線(xiàn)l∥x軸,與拋物線(xiàn)交于另一點(diǎn)B,與y軸交于點(diǎn)C.
![]()
(1)求m的值.
(2)當(dāng)a=2時(shí),求點(diǎn)B的坐標(biāo).
(3)如圖2,以OB為對(duì)角線(xiàn)作菱形OPBQ,頂點(diǎn)P在直線(xiàn)l上,頂點(diǎn)Q在x軸上.
①若PB=2AP,求a的值.
②菱形OPBQ的面積的最小值是 .
![]()
【答案】(1)當(dāng)x=-2時(shí),y=4a-4(a-1)=4(2)點(diǎn)B的坐標(biāo)為(1,4)(3)①
②菱形的最小面積=16
【解析】(1)把x=-2代入拋物線(xiàn)
即可得到y(tǒng)的值;(2)先求出拋物線(xiàn)表達(dá)式,然后求出x的解;(3)利用拋物線(xiàn)的對(duì)稱(chēng)軸即可求出點(diǎn)B的坐標(biāo)和a的值以及菱形OPBQ的面積的最小值.
解:(1)當(dāng)x=-2時(shí),
(2)當(dāng)a=2時(shí),拋物線(xiàn)表達(dá)式為![]()
當(dāng)y=4時(shí),
,
解得
把-2舍去,點(diǎn)B的坐標(biāo)為(1,4)
(3)①當(dāng)點(diǎn)P在線(xiàn)段AB上時(shí),設(shè)CP=x,則AP=2+x,BP=OP=4+2x
在Rt△OCP中,
,
解得
∴CP=0,CB=PB=4,點(diǎn)B的坐標(biāo)是(4,4)
由題可知拋物線(xiàn)的對(duì)稱(chēng)軸:直線(xiàn)
又由點(diǎn)A與點(diǎn)B關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),則
,解得![]()
當(dāng)點(diǎn)P在射線(xiàn)BA上時(shí),設(shè)CP=x,則AP=x-2,BP=OP=2x-4
在Rt△OCP中,
,解得
(舍去),
,
∴CP=
,PB=
,CB=
點(diǎn)B的坐標(biāo)是(
,4)
由點(diǎn)A與點(diǎn)B關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),則
,解得![]()
②菱形的最小面積=16
“點(diǎn)睛”本題考查待定系數(shù)法確定二次函數(shù)解析式、二次函數(shù)性質(zhì)等知識(shí),解題的關(guān)鍵是由點(diǎn)A與點(diǎn)B關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng)求出a的值,會(huì)運(yùn)用方程的思想解決問(wèn)題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】調(diào)查青銅峽市全民健身情況,這種調(diào)查適合用______________(填“普查”或“抽樣調(diào)查”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,點(diǎn)A、B分別在函數(shù)y1=
(x>0)與y2=﹣
(x<0)的圖象上,A、B的橫坐標(biāo)分別為a、b.![]()
(1)若AB∥x軸,求△OAB的面積;
(2)若△OAB是以AB為底邊的等腰三角形,且a+b≠0,求ab的值;
(3)作邊長(zhǎng)為2的正方形ACDE,使AC∥x軸,點(diǎn)D在點(diǎn)A的左上方,那么,對(duì)大于或等于3的任意實(shí)數(shù)a,CD邊與函數(shù)y1=
(x>0)的圖象都有交點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠BAC=90°,AB=AC,A(﹣3,0),B(0,1),C(m,n).![]()
(1)請(qǐng)直接寫(xiě)出C點(diǎn)坐標(biāo).
(2)將△ABC沿x軸的正方向平移t個(gè)單位,B′、C′兩點(diǎn)的對(duì)應(yīng)點(diǎn)、正好落在反比例函數(shù)y=
在第一象限內(nèi)圖象上.請(qǐng)求出t,k的值.
(3)在(2)的條件下,問(wèn)是否存x軸上的點(diǎn)M和反比例函數(shù)y=
圖象上的點(diǎn)N,使得以B′、C′,M,N為頂點(diǎn)的四邊形構(gòu)成平行四邊形?如果存在,請(qǐng)求出所有滿(mǎn)足條件的點(diǎn)M和點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列結(jié)論:①2a+b>0;
②b>a>c;③若-1<m<n<1,則m+n<
;④3|a|+|c|<2|b|.其中正確的結(jié)論個(gè)數(shù)是( )
![]()
A. ①③④ B. ①③ C. ①④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于
的函數(shù)
(
為常數(shù))
(1)若函數(shù)的圖象與
軸恰有一個(gè)交點(diǎn),求
的值;
(2)若函數(shù)的圖象是拋物線(xiàn),且頂點(diǎn)始終在
軸上方,求
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)大部分地區(qū)飽受“四面霾伏”的困擾,霾的主要成分是PM2.5,是指直徑小于等于0.0000025m的粒子,數(shù)0.0000025用科學(xué)記數(shù)法可表示為 .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com