【題目】把一張長(zhǎng)方形紙片按如圖方式折疊,使頂點(diǎn)
和點(diǎn)
重合,折痕為
.若
,
.
![]()
求(
)
的長(zhǎng).
(
)重疊部分
的面積.
【答案】(1)3.4;(2)5.1
【解析】試題分析:(1)根據(jù)折疊的性質(zhì)知:BF=DF,用DF表示出FC,在Rt△DCF中,利用勾股定理可求得DF的長(zhǎng);
(2)作FH⊥AD于點(diǎn)H,求得FH,由折疊的性質(zhì)和平行線(xiàn)的性質(zhì)證得∠EFD=∠DEF,得出DE=DF,進(jìn)一步利用三角形的面積計(jì)算公式即可求解.
試題解析:
解:(1)設(shè)DF=x,
由折疊可知BF=DF=x,
∴FC=BC-BF=5-x,
∵四邊形ABCD為長(zhǎng)方形,
∴DC=AB=3,∠C=90°,AD∥BC,
在Rt△DCF中,∠C=90°,DF2=DC2+FC2
x2=32+(5-x)2
x=3.4,
∴DF=3.4cm;
(2)作FH⊥AD于點(diǎn)H,
![]()
則FH=AB=3,
由折疊可知,
∠EFB=∠EFD,
∵AD∥BC,
∴∠DEF=∠EFB,
∴∠EFD=∠DEF,
∴ED=DF=3.4,
S△DEF=
×DE×FH=
×3.4×3=5.1.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知小華家、小夏家、小紅家及學(xué)校在同一條大路旁,一天,他們放學(xué)后從學(xué)校出發(fā),先向南行1000m到達(dá)小華家A處,繼續(xù)向北行3000m到達(dá)小紅B家處,然后向南行6000m到小夏家C處.
(1)以學(xué)校以原點(diǎn),以向南方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1000m,請(qǐng)你在數(shù)軸上表示出小華家、小夏家、小紅家的位置;
(2)小紅家在學(xué)校什么位置?離學(xué)校有多遠(yuǎn)?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O,D,E三點(diǎn)在同一直線(xiàn)上,∠AOB=90°.
(1)圖中∠AOD的補(bǔ)角是_____,∠AOC的余角是_____;
(2)如果OB平分∠COE,∠AOC=35°,請(qǐng)計(jì)算出∠BOD的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,AB=8,∠BAD=60°,點(diǎn)E從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)E不與點(diǎn)A重合時(shí),過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,作EG∥AD交AC于點(diǎn)G,過(guò)點(diǎn)G作GH⊥AD交AD(或AD的延長(zhǎng)線(xiàn))于點(diǎn)H,得到矩形EFHG,設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為t秒![]()
(1)求線(xiàn)段EF的長(zhǎng)(用含t的代數(shù)式表示);
(2)求點(diǎn)H與點(diǎn)D重合時(shí)t的值;
(3)設(shè)矩形EFHG與菱形ABCD重疊部分圖形的面積與S平方單位,求S與t之間的函數(shù)關(guān)系式;
(4)矩形EFHG的對(duì)角線(xiàn)EH與FG相交于點(diǎn)O′,當(dāng)OO′∥AD時(shí),t的值為;當(dāng)OO′⊥AD時(shí),t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,BD,CE分別是邊AC,AB上的中線(xiàn),BD與CE相交于點(diǎn)O,點(diǎn)M,N分別為線(xiàn)段BO和CO的中點(diǎn).求證:四邊形EDNM是矩形.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明學(xué)了有理數(shù)的乘方后,知道23=8,25=32,他問(wèn)老師,有沒(méi)有20,2﹣3,如果有,等于多少?老師耐心提示他:25÷23=4,25﹣3=4,即25÷23=25﹣3=22=4,…“哦,我明白了了,”小明說(shuō),并且很快算出了答案,親愛(ài)的同學(xué),你想出來(lái)了嗎?
(1)請(qǐng)仿照老師的方法,推算出20,2﹣3的值.
(2)據(jù)此比較(﹣3)﹣2與(﹣2)﹣3的大。▽(xiě)出計(jì)算過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖
,
中,
于
,且
.
(
)試說(shuō)明
是等腰三角形.
(
)已知
,如圖
,動(dòng)點(diǎn)
從點(diǎn)
出發(fā)以每秒
的速度沿線(xiàn)段
向點(diǎn)
運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)
從點(diǎn)
出發(fā)以相同速度沿線(xiàn)段
向點(diǎn)
運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.設(shè)點(diǎn)
運(yùn)動(dòng)的時(shí)間為
(秒).
①若
的邊與
平行,求
的值.
②若點(diǎn)
是邊
的中點(diǎn),問(wèn)在點(diǎn)
運(yùn)動(dòng)的過(guò)程中,
能否成為等腰三角形?若能,求出
的值;若不能,請(qǐng)說(shuō)明理由.
![]()
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校隨機(jī)調(diào)查了部分學(xué)生,就“你最喜歡的圖書(shū)類(lèi)別”(只選一項(xiàng))對(duì)學(xué)生課外閱讀的情況作了調(diào)查統(tǒng)計(jì),將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如下統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖表提供的信息解答下列問(wèn)題:
種類(lèi) | 頻數(shù) | 頻率 |
卡通畫(huà) | a |
|
時(shí)文雜志 | b | 0.16 |
武俠小說(shuō) | 50 | c |
文學(xué)名著 | d | e |
![]()
(1)這次隨機(jī)調(diào)查了______名學(xué)生,統(tǒng)計(jì)表中a=______,d=______;
(2)假如以此統(tǒng)計(jì)表繪出扇形統(tǒng)計(jì)圖,則武俠小說(shuō)對(duì)應(yīng)的圓心角是______;
(3)試估計(jì)該校1500名學(xué)生中有多少名同學(xué)最喜歡文學(xué)名著類(lèi)書(shū)籍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題: ①若
>1,則a>b;
②若a+b=0,則|a|=|b|;
③等邊三角形的三個(gè)內(nèi)角都相等;
④底角相等的兩個(gè)等腰三角形全等.
其中原命題與逆命題均為真命題的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com