【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為( )![]()
A.![]()
B.![]()
C.![]()
D.
【答案】A
【解析】連接OE,OF,ON,OG,
![]()
在矩形ABCD中,
∵∠A=∠B=90°,CD=AB=4,
∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,
∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
∴四邊形AFOE,F(xiàn)BGO是正方形,
∴AF=BF=AE=BG=2,
∴DE=3,
∵DM是⊙O的切線,
∴DN=DE=3,MN=MG,
∴CM=5﹣2﹣MN=3﹣MN,
在Rt△DMC中,DM2=CD2+CM2,
∴(3+NM)2=(3﹣NM)2+42,
∴NM=
,
∴DM=3
=
,
故答案為:A.
易得四邊形ABMD外切于⊙O,由切線的性質(zhì)易得∠AEO=∠AFO=∠OFB=∠BGO=90°,四邊形AFOE,F(xiàn)BGO是正方形;AF=BF=AE=BG=2,DE=3。在R t△CDM中,利用MN表示三邊,再利用勾股定理可得MN的值,最后可得DM的值。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形
中,
,
,
,
,過點
作
于點
.
(1)找出圖中相等的銳角,并說明理由.
(2)求出點
到直線
的距離以及點
到直線
的距離.
![]()
解:(1)
(已知),
,
,
,
.
同理可證,
.
(2)點
到直線
的距離
.
到直線
的距離為線段 的長度.
(填線段名稱).
,
,
,代入上式,解得
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:在綜合實踐課上,老師讓同學(xué)們在已知三角形的基礎(chǔ)上,經(jīng)過畫圖,探究三角形邊之間存在的關(guān)系.如圖,已知點
在
的邊
的延長線上,過點
作
且
,在
上截取
,再作
交線段
于點
.
![]()
實踐操作
(1)尺規(guī)作圖:作出符合上述條件的圖形;
探究發(fā)現(xiàn)
(2)勤奮小組在作出圖形后,發(fā)現(xiàn)
,
,請說明理由;
探究應(yīng)用
(3)縝密小組在勤奮小組探究的基礎(chǔ)上,測得
,
,求線段
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)
的圖像經(jīng)過點
,且與
軸相交于點
,與正比例函數(shù)
的圖像交于點
,點
的橫坐標(biāo)為
.
(1)求
的值;
(2)若點
在
軸上,且滿足
,求點
的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全區(qū)5000名初中畢業(yè)生的體重情況,隨機抽測了400名學(xué)生的體重,頻率分布如圖所示(每小組數(shù)據(jù)可含最小值,不含最大值),其中從左至右前四個小長方形的高依次為0.02、0.03、0.04、0.05,由此可估計全區(qū)初中畢業(yè)生的體重不小于60千克的學(xué)生人數(shù)約為人. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com