【題目】如圖,拋物線
與x軸交于點(diǎn)A、點(diǎn)B,與直線
相交于點(diǎn)B、點(diǎn)C,直線
與y軸交于點(diǎn)E。
(1)寫出直線BC的解析式。
(2)求△ABC的面積。
(3)若點(diǎn)M在線段AB上以每秒1個單位長度的速度從A向B運(yùn)動(不與A,B重合),同時,點(diǎn)N在射線BC上以每秒2個單位長度的速度從B向C運(yùn)動。設(shè)運(yùn)動時間為t秒,請寫出△MNB的面積S與t的函數(shù)關(guān)系式,并求出點(diǎn)M運(yùn)動多少時間時,△MNB的面積最大,最大面積是多少?
![]()
【答案】
【解析】
試題分析:(1)根據(jù)待定系數(shù)法求出BC的解析式;
(2)令y=0代入y=-
x2+3求出點(diǎn)A,B的坐標(biāo).把B點(diǎn)坐標(biāo)代入y=-
x+b求出BC的解析式,聯(lián)立方程組求出B.C的坐標(biāo).求出AB,CD的長后可求出三角形ABC的面積.
(3)過N點(diǎn)作NP⊥MB,證明△BNP∽△BEO,由已知令y=0求出點(diǎn)E的坐標(biāo),利用線段比求出NP,BE的長.求出S與t的函數(shù)關(guān)系式后利用二次函數(shù)的性質(zhì)求出S的最大值.
試題解析:(1)在
中,令y=0
∴![]()
∴x1=2,x2=-2
∴A(-2,0),B(2,0)
又∵點(diǎn)B在
上
∴![]()
![]()
∴BC的解析式為![]()
(2)由 ![]()
![]()
得
; ![]()
∴C
B(2,0)
∴AB=4 CD=![]()
∴S△ABC=![]()
![]()
(3)過點(diǎn)N作NP⊥MB于點(diǎn)P
∵EO⊥MB
∴NP∥EO
∴△BNP∽△BEO
∴![]()
由直線
可得:E![]()
∴在RT△BEO中,BO=2,EO=
,則BE=![]()
∴![]()
∴NP=![]()
∴S=
![]()
S=![]()
S=![]()
∵
<0
∴當(dāng)t =2時,S最大=![]()
∴當(dāng)點(diǎn)M運(yùn)動2秒時,△MNB的面積達(dá)到最大,最大為
。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)若|x+5|=2,則x= ;
(2)代數(shù)式|x﹣1|+|x+3|的最小值為 ,當(dāng)取此最小值時,x的取值范圍是 ;
(3)解方程:|2x+4|﹣|x﹣3|=9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是 。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中,正確的有( )
①相等的圓心角所對的弧相等;
②平分弦的直徑垂直于弦;
③長度相等的兩條弧是等弧;
④經(jīng)過圓心的每一條直線都是圓的對稱軸.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式正確的是( )
A.x(x+y)=x2+xyB.(2a﹣3b)2=4a2﹣6ab+9b2
C.5(x﹣y+1)=5x﹣5yD.(a+b)(a﹣b)=a2+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在以點(diǎn)O為圓心的兩個同心圓中,大圓的弦AB交小圓于點(diǎn)C、D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓心O到直線AB的距離為6,求AC的長.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com