【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于點(diǎn)A(6,0),B(0,8),點(diǎn)C的坐標(biāo)為(0,m),過點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)D為x軸上的一動點(diǎn),連接CD,DE,以CD,DE為邊作CDEF.![]()
(1)當(dāng)0<m<8時,求CE的長(用含m的代數(shù)式表示);
(2)當(dāng)m=3時,是否存在點(diǎn)D,使CDEF的頂點(diǎn)F恰好落在y軸上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)D在整個運(yùn)動過程中,若存在唯一的位置,使得CDEF為矩形,請求出所有滿足條件的m的值.
【答案】
(1)
解:∵A(6,0),B(0,8).
∴OA=6,OB=8.
∴AB=10,
∵∠CEB=∠AOB=90°,
又∵∠OBA=∠EBC,
∴△BCE∽△BAO,
∴
=
,即
=
,
∴CE=
﹣
m
(2)
解:∵m=3,
∴BC=8﹣m=5,CE=
﹣
m=3.
∴BE=4,
∴AE=AB﹣BE=6.
∵點(diǎn)F落在y軸上(如圖2).
![]()
∴DE∥BO,
∴△EDA∽△BOA,
∴
=
即
=
.
∴OD=
,
∴點(diǎn)D的坐標(biāo)為(
,0)
(3)
解:取CE的中點(diǎn)P,過P作PG⊥y軸于點(diǎn)G.
則CP=
CE=
﹣
m.
(Ⅰ)當(dāng)m>0時,
①當(dāng)0<m<8時,如圖3.易證∠GCP=∠BAO,
![]()
∴cos∠GCP=cos∠BAO=
,
∴CG=CPcos∠GCP=
(
﹣
m)=
﹣
m.
∴OG=OC+CG=m+
﹣
m=
m+
.
根據(jù)題意得,得:OG=CP,
∴
m+
=
﹣
m,
解得:m=
;
②當(dāng)m≥8時,OG>CP,顯然不存在滿足條件的m的值.
(Ⅱ)當(dāng)m=0時,即點(diǎn)C與原點(diǎn)O重合(如圖4).
![]()
(Ⅲ)當(dāng)m<0時,
①當(dāng)點(diǎn)E與點(diǎn)A重合時,(如圖5),
![]()
易證△COA∽△AOB,
∴
=
,即
=
,
解得:m=﹣
.
②當(dāng)點(diǎn)E與點(diǎn)A不重合時,(如圖6).
![]()
OG=OC﹣CG=﹣m﹣(
﹣
m)
=﹣
m﹣
.
由題意得:OG=CP,
∴﹣
m﹣
=
﹣
m.
解得m=﹣
.
綜上所述,m的值是
或0或﹣
或﹣
.
【解析】(1)首先證明△BCE∽△BAO,根據(jù)相似三角形的對應(yīng)邊的比相等即可求得;(2)證明△EDA∽△BOA,根據(jù)相似三角形的對應(yīng)邊的比相等即可求得;(3)分m>0,m=0和m<0三種情況進(jìn)行討論,當(dāng)m=0時,一定成立,當(dāng)m>0時,分0<m<8和m>8兩種情況,利用三角函數(shù)的定義即可求解.當(dāng)m<0時,分點(diǎn)E與點(diǎn)A重合和點(diǎn)E與點(diǎn)A不重合時,兩種情況進(jìn)行討論.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,透明的圓柱形容器(容器厚度忽略不計)的高為12cm,底面周長為10cm,在容器內(nèi)壁離容器底部3cm的點(diǎn)B處有一飯粒,此時一只螞蟻正好在容器外壁,且離容器上沿3cm的點(diǎn)A處,則螞蟻吃到飯粒需爬行的最短路徑是多少?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,已知y=
(x>0)圖象上一點(diǎn)P,PA⊥x軸于點(diǎn)A(a,0),點(diǎn)B坐標(biāo)為(0,b)(b>0),動點(diǎn)M是y軸正半軸上B點(diǎn)上方的點(diǎn),動點(diǎn)N在射線AP上,過點(diǎn)B作AB的垂線,交射線AP于點(diǎn)D,交直線MN于點(diǎn)Q連接AQ,取AQ的中點(diǎn)為C.![]()
(1)如圖2,連接BP,求△PAB的面積;
(2)當(dāng)點(diǎn)Q在線段BD上時,若四邊形BQNC是菱形,面積為2
,求此時P點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)Q在射線BD上時,且a=3,b=1,若以點(diǎn)B,C,N,Q為頂點(diǎn)的四邊形是平行四邊形,求這個平行四邊形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)2+4與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,過點(diǎn)C作CD∥x軸交拋物線的對稱軸于點(diǎn)D,連接BD,已知點(diǎn)A的坐標(biāo)為(﹣1,0) ![]()
(1)求該拋物線的解析式;
(2)求梯形COBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,8),點(diǎn)P在邊BC上以每秒1個單位長的速度由點(diǎn)C向點(diǎn)B運(yùn)動,同時點(diǎn)Q在邊AB上以每秒a個單位長的速度由點(diǎn)A向點(diǎn)B運(yùn)動,運(yùn)動時間為t秒(t>0).![]()
(1)若反比例函數(shù)y=
圖象經(jīng)過P點(diǎn)、Q點(diǎn),求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)當(dāng)Q點(diǎn)運(yùn)動到AB中點(diǎn)時,是否存在a使△OPQ為直角三角形?若存在,求出a的值,若不存在請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位同學(xué)在操場上互相傳球,假設(shè)他們相互間傳球是等可能的,并且由甲首先開始傳球.
(1)經(jīng)過2次傳球后,球仍回到甲手中的概率是;
(2)請用列舉法(畫樹狀圖或列表)求經(jīng)過3次傳球后,球仍回到甲手中的概率;
(3)猜想并直接寫出結(jié)論:經(jīng)過n次傳球后,球傳到甲、乙這兩位同學(xué)手中的概率:P(球傳到甲手中)和P(球傳到乙手中)的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
![]()
(1)將圖1中的三角板繞點(diǎn)O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問:此時直線ON是否平分∠AOC?請說明理由.
(2)將圖1中的三角板繞點(diǎn)O以每秒6°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為 (直接寫出結(jié)果).
(3)將圖1中的三角板繞點(diǎn)O順時針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,求∠AOM﹣∠NOC的度數(shù).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com