【題目】閱讀理解:
為解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我們可以將x2﹣1視為一個整體,然后設x2﹣1=y,則原方程化為y2﹣5y+4=0,解此方程得:y1=1,y2=4.
當y=1時,x2﹣1═1,∴x=±
.
當y=4時,x2﹣1═4,∴x=±
.
∴原方程的解為:x1=
,x2=﹣
,x3=
,x4=﹣
.
以上方法叫做換元法解方程,達到了降次的目的,體現了轉化思想.
運用上述方法解方程:x4﹣8x2+12=0.
科目:初中數學 來源: 題型:
【題目】據調查,超速行駛是引發交通事故的主要原因之一,所以規定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀,如圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°.
(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.(tan31°≈0.6,tan50°≈1.2,結果精確到1m)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的角平分線CF于點F,求證:AE=EF.
![]()
經過思考,小明展示了一種正確的解題思路:取AB的中點M,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎上,同學們作了進一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結論“AE=EF”仍然成立.你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明有5張寫著不同數字的卡片,請按要求抽出卡片,完成下列各問題:
![]()
(1)從中取出2張卡片,使這2張卡片上數字的乘積最大,如何抽取?最大值是多少?答:我抽取的2張卡片是________、________,乘積的最大值為________.
(2)從中取出2張卡片,使這2張卡片上數字相除的商最小,如何抽取?最小值是多少?答:我抽取的2張卡片是________、________,商的最小值為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標準,超過或不足的千克數分別用正、負數來表示,記錄如下:
![]()
(1)20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
(2)與標準重量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2.8元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用小立方塊搭成的幾何體,主視圖和俯視圖如下,
![]()
填空:這樣的幾何體有________種可能,它最多需要________小立方塊,最少需要________小立方塊.
請畫出最多和最少時的左視圖.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com