【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:
組別 | 成績x分 | 頻數(人數) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
請結合圖表完成下列各題:![]()
(1)①求表中a的值;②頻數分布直方圖補充完整;
(2)若測試成績不低于80分為優秀,則本次測試的優秀率是多少?
(3)第5組10名同學中,有4名男同學,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.
【答案】
(1)解:①由題意和表格,可得
a=50﹣6﹣8﹣14﹣10=12,
即a的值是12;
②補充完整的頻數分布直方圖如下圖所示,
![]()
(2)解:∵測試成績不低于80分為優秀,
∴本次測試的優秀率是: ![]()
(3)解:設小明和小強分別為A、B,另外兩名學生為:C、D,
則所有的可能性為:(AB)、(AC)、(AD)、(BA)、(BC)、(BD)、(CA)、(CB)、(CD)、(DA)、(DB)、(DC),
所以小明和小強分在一起的概率為: ![]()
【解析】(1)①根據題意和表中的數據可以求得a的值;②由表格中的數據可以將頻數分布表補充完整;(2)根據表格中的數據和測試成績不低于80分為優秀,可以求得優秀率;(3)根據題意可以求得所有的可能性,從而可以得到小明與小強兩名男同學能分在同一組的概率.
【考點精析】解答此題的關鍵在于理解頻數分布直方圖的相關知識,掌握特點:①易于顯示各組的頻數分布情況;②易于顯示各組的頻數差別.(注意區分條形統計圖與頻數分布直方圖),以及對列表法與樹狀圖法的理解,了解當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率.
科目:初中數學 來源: 題型:
【題目】把大小完全相同的6個乒乓球分成兩組,每組3個,每組乒乓球上面分別標有數字1,2,3,將這兩組乒乓球分別放入兩個盒子中攪勻,再從每個盒子中各隨機取出1個乒乓球,請用畫樹狀圖(或列表)的方法,求取出的2個乒乓球上面數字之和為偶數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分別為
三邊的長.
(1)如果
是方程的根,則
的形狀為 ;
(2)如果方程有兩個相等的實數根,試判斷
的形狀,并說明理由;
(3)如果
是等邊三角形,試求這個一元二次方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】大眾服裝店今年4月用4000元購進了一款襯衣若干件,上市后很快售完,服裝店于5月初又購進同樣數量的該款襯衣,由于第二批襯衣進貨時價格比第一批襯衣進貨時價格提高了20元,結果第二批襯衣進貨用了5000元.
(1)第一批襯衣進貨時的價格是多少?
(2)第一批襯衣售價為120元/件,為保證第二批襯衣的利潤率不低于第一批襯衣的利潤率,那么第二批襯衣每件售價至少是多少元? (提示:利潤=售價﹣成本,利潤率=
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的面積為16,點D是BC邊上一點,且BD=
BC,點G是AB上一點,點B在△ABC內部,且四邊形BDHG是平行四邊形,則圖中陰影部分的面積是 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CB、DC(或它們的延長線)于點M、N,AH⊥MN于點H. ![]()
(1)如圖①,當∠MAN繞點A旋轉到BM=DN時,請你直接寫出AH與AB的數量關系:;
(2)如圖②,當∠MAN繞點A旋轉到BM≠DN時,(1)中發現的AH與AB的數量關系還成立嗎?如果不成立請寫出理由,如果成立請證明;
(3)如圖③,已知∠MAN=45°,AH⊥MN于點H,且MH=2,NH=3,求AH的長.(可利用(2)得到的結論)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠C=90°,點P是CD邊上的動點,連接AP,E,F分別是AB,AP的中點,當點P在CD上從點D向點C移動過程中,下列結論成立的是( ) ![]()
A.線段EF的長先減小后增大
B.線段EF的長不變
C.線段EF的長逐漸增大
D.線段EF的長逐漸減小
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點M,若H是AC的中點,連接MH. ![]()
(1)求證:MH為⊙O的切線.
(2)若MH=
,tan∠ABC=
,求⊙O的半徑.
(3)在(2)的條件下分別過點A、B作⊙O的切線,兩切線交于點D,AD與⊙O相切于N點,過N點作NQ⊥BC,垂足為E,且交⊙O于Q點,求線段NQ的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com