試題分析:(1)連接OD,則OD⊥CD,∠CDE+∠ODA=90°,在Rt△AOE中,∠AEO+∠A=90°,再由OA=OD根據等邊對等角可得∠A=∠ODA,∠CDE=∠AEO,即可得到結論;
(2)將原來的半徑OB所在直線向上平行移動,可得CF⊥AO于F,在Rt△AFE中,∠A+∠AEF=90°,
連接OD,則∠ODA+∠CDE=90°,再由OA=OD根據等邊對等角可得∠A=∠ODA,∠AEF=∠CDE,即可知結論仍然成立.
(1)△CDE是等腰三角形.理由如下:
連接OD,則OD⊥CD,∠CDE+∠ODA=90°;

在Rt△AOE中,∠AEO+∠A=90°,
在⊙O中,∵OA=OD,
∴∠A=∠ODA,∠CDE=∠AEO,
又∵∠AEO=∠CED,
∴∠CED=∠CDE,
∴CD=CE,
即△CDE是等腰三角形;
(2)結論仍然成立.理由如下:

∵將原來的半徑OB所在直線向上平行移動,
∴CF⊥AO于F,
在Rt△AFE中,∠A+∠AEF=90°,
連接OD,則∠ODA+∠CDE=90°,且OA=OD,
故可得∠A=∠ODA,∠AEF=∠CDE,
又∵∠AEF=∠CED,
∴∠CED=∠CDE,
∴CD=CE.
故△CDE是等腰三角形.
點評:解答本題的關鍵是掌握好圓的性質,靈活運用等邊對等角,等角對等邊,選擇合適的條件,再結合等量代換等數學方法求解。