【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).![]()
(1)求拋物線的解析式;
(2)如圖2,過(guò)點(diǎn)A的直線與拋物線交于點(diǎn) E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為2,若直線PQ為拋物線的對(duì)稱軸,點(diǎn)G為直線 PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G,H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最小?若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖3,在拋物線上是否存在一點(diǎn)T,過(guò)點(diǎn)T作x軸的垂線,垂足為點(diǎn)M,過(guò)點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,使△DNM∽△BMD?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:設(shè)拋物線的解析式為:y=a(x﹣1)2+4,
∵點(diǎn)B的坐標(biāo)為(3,0).
∴4a+4=0,
∴a=﹣1,
∴此拋物線的解析式為:y=﹣(x﹣1)2+4=﹣x2+2x+3
(2)
解:存在.
拋物線的對(duì)稱軸方程為:x=1,
∵點(diǎn)E的橫坐標(biāo)為2,
∴y=﹣4+4+3=3,
∴點(diǎn)E(2,3),
∴設(shè)直線AE的解析式為:y=kx+b,
∴
,
∴
,
∴直線AE的解析式為:y=x+1,
∴點(diǎn)F(0,1),
∵D(0,3),
∴D與E關(guān)于x=1對(duì)稱,
作F關(guān)于x軸的對(duì)稱點(diǎn)F′(0,﹣1),
連接EF′交x軸于H,交對(duì)稱軸x=1于G,
四邊形DFHG的周長(zhǎng)即為最小,
設(shè)直線EF′的解析式為:y=mx+n,
∴
,
解得:
,
∴直線EF′的解析式為:y=2x﹣1,
∴當(dāng)y=0時(shí),2x﹣1=0,得x=
,
即H(
,0),
當(dāng)x=1時(shí),y=1,
∴G(1,1);
∴DF=2,F(xiàn)H=F′H=
=
,DG=
=
,
∴使D、G,H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最小值為:DF+FH+GH+DG=2+
+
+
=2+2 ![]()
![]()
(3)
解:存在.
∵BD=
=3
,
設(shè)M(c,0),
∵M(jìn)N∥BD,
∴
,
即
=
,
∴MN=
(1+c),DM=
,
要使△DNM∽△BMD,
需
,即DM2=BDMN,
可得:9+c2=3
×
(1+c),
解得:c=
或c=3(舍去).
當(dāng)x=
時(shí),y=﹣(
﹣1)2+4=
.
∴存在,點(diǎn)T的坐標(biāo)為(
,
)
![]()
【解析】(1)設(shè)拋物線的解析式為:y=a(x﹣1)2+4,然后將點(diǎn)B的坐標(biāo)代入函數(shù)解析式即可求得此拋物線的解析式;(2)作F關(guān)于x軸的對(duì)稱點(diǎn)F′(0,﹣1),連接EF′交x軸于H,交對(duì)稱軸x=1于G,四邊形DFHG的周長(zhǎng)即為最小,則根據(jù)題意即可求得這個(gè)最小值及點(diǎn)G、H的坐標(biāo);(3)首先設(shè)M的坐標(biāo)為(a,0),求得BD與DM的長(zhǎng),由平行線分線段成比例定理,求得MN的長(zhǎng),然后由相似三角形對(duì)應(yīng)邊成比例,即可得DM2=BDMN,則可得到關(guān)于a的一元二次方程,解方程即可求得答案.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=
BC,連接CD和EF. ![]()
(1)求證:DE=CF;
(2)求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,菱形ABCD中,點(diǎn)E、F分別為AB、AD的中點(diǎn),連接CE、CF. ![]()
(1)求證:CE=CF;
(2)如圖2,若H為AB上一點(diǎn),連接CH,使∠CHB=2∠ECB,求證:CH=AH+AB. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表:
A種產(chǎn)品 | B種產(chǎn)品 | |
成本(萬(wàn)元∕件) | 3 | 5 |
利潤(rùn)(萬(wàn)元∕件) | 1 | 2 |
(1)若工廠計(jì)劃獲利14萬(wàn)元,問(wèn)A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,問(wèn)工廠有哪幾種生產(chǎn)方案?
(3)在(2)條件下,哪種方案獲利最大?并求最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的內(nèi)心在y軸上,點(diǎn)C的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)是(0,2),直線AC的解析式為
,則tanA的值是 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫圖題:
(1)如圖,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后得到△A1B1C1 . 請(qǐng)你畫出旋轉(zhuǎn)后的△A1B1C1; ![]()
(2)請(qǐng)你畫出下面“蒙古包”的左視圖.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的分式方程
無(wú)解,則m的值為( )
A.-1.5
B.1
C.-1.5或2
D.-0.5或-1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC為⊙O的直徑,B為⊙O上一點(diǎn),∠ACB=30°,延長(zhǎng)CB至點(diǎn)D,使得CB=BD,過(guò)點(diǎn)D作DE⊥AC,垂足E在CA的延長(zhǎng)線上,連接BE. ![]()
(1)求證:BE是⊙O的切線;
(2)當(dāng)BE=3時(shí),求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD中,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件,使△ABE≌△CDF,則添加的條件不能為( ) ![]()
A.BE=DF
B.BF=DE
C.AE=CF
D.∠1=∠2
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com