【題目】認真閱讀下面關于三角形內外角平分線的研究片斷,完成所提出的問題.
探究1:如圖(1)在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發現∠BOC=90°+
∠A,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=
∠ABC,∠2=
∠ACB.
∴∠1+∠2=
(∠ABC+∠ACB)=
(180°-∠A)=90°-
∠A.
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
∠A)=90°+
∠A
探究2:如圖(2)中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關系?請說明理由.
![]()
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中畫出直線y=
x+1的圖象,并根據圖象回答下列問題:
(1)寫出直線與x軸、y軸的交點坐標;
(2)求出直線與坐標軸圍成的三角形的面積;
(3)若直線y=kx+b與直線y=
x+1關于y軸對稱,求k,b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC內接于⊙O,且AB=AC,直徑AD交BC于點E,F是OE上的一點,使CF∥BD. ![]()
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=AD=8,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,銳角∠DAB的平分線AC交⊙O于點C,作CD⊥AD,垂足為D,直線CD與AB的延長線交于點E. ![]()
(1)求證:直線CD為⊙O的切線;
(2)當AB=2BE,且CE=
時,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,DE:EC=2:3,則S△DEF:S△ABF=( ) ![]()
A.2:3
B.4:9
C.2:5
D.4:25
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中AD是∠A的外角平分線,P是AD上一動點且不與點A、D重合,記PB+PC=a,AB+AC=b,則a、b的大小關系是( )
![]()
A.a>b B.a=b C.a<b D.不能確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把△ABC沿DE折疊,當點A落在四邊形BCDE內部時,∠A與∠1+∠2之間有一種數量關系始終保持不變,請試著找一找這個規律,你發現的規律是什么?試說明你找出的規律的正確性.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF. ![]()
(1)填空:△ABF可以由△ADE繞旋轉中心點 , 按逆時針方向旋轉度得到;
(2)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com