【題目】小明在學(xué)習(xí)三角形知識(shí)時(shí),發(fā)現(xiàn)如下三個(gè)有趣的結(jié)論:在
中,
,
平分
,
為直線
上一點(diǎn),
,
為垂足,
的平分線交直線
于點(diǎn)
,回答下列問題并說明.(可在圖上標(biāo)注數(shù)字角)
(1)如圖①,
為邊
上一點(diǎn),則
、
的位置關(guān)系是________.請(qǐng)給予證明;
![]()
(2)如圖②,
為邊
反向延長線上一點(diǎn),則
、
的位置關(guān)系是________.(請(qǐng)直接寫出結(jié)論)
![]()
(3)如圖③,
為邊
延長線上一點(diǎn),則
、
的位置關(guān)系是________.請(qǐng)給予證明.
![]()
【答案】(1)
,見解析;(2)
;(3)
,見解析
【解析】
(1)根據(jù)∠A=90°,
,得∠CME=∠ABC,再由四邊形內(nèi)角和知∠ABC+∠AME=180°,再由BD平分∠ABC,ME平分∠AME可得
,
,即得到
,
(2)由題意可以得到∠AME=∠ABC,又由BD平分∠ABC,ME平分∠AME可以得到∠AMF=∠ABD,即可得到∠AMF+∠ADB=90°即可得到
,
(3)先根據(jù)題意延長BD交EF于N,根據(jù)題意得出∠ABD=∠DMN,再根據(jù)三角形內(nèi)角和即可得出
.
解:(1)![]()
證明:∵
,
∴
;
∵在四邊形
中,
,
∴
;
∵
平分
,
∴
;
同理
,
∴
;
∵
,
∴
,
∴
,
∴
.
(2)![]()
(3)![]()
證明:延長
交
于點(diǎn)
,
在
與
中
![]()
∵
與
為對(duì)頂角,
∴
;
∵
,
∴
;
∵
,
分別平分
,
,
∴
,
,
∴
;
在
與
中
,
∵
與
為對(duì)頂角,
∴
,
∴
,
∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求證:BE=AD;
![]()
(2)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中,x與y的部分對(duì)應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 |
y | 0 | ﹣3 | ﹣4 | ﹣3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y隨x的增大而增大;
③﹣4是方程ax2+(b﹣4)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<0時(shí),ax2+(b﹣1)x+c+3>0.其中正確結(jié)論的個(gè)數(shù)為( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)活動(dòng)中,檢驗(yàn)兩條紙帶①、②的邊線是否平行,小明和小麗采用兩種不同的方法:小明對(duì)紙帶①沿AB折疊,量得∠1=∠2=50°;小麗對(duì)紙帶②沿GH折疊,發(fā)現(xiàn)GD與GC重合,HF與HE重合. 則下列判斷正確的是( )
![]()
A. 紙帶①的邊線平行,紙帶②的邊線不平行 B. 紙帶①、②的邊線都平行
C. 紙帶①的邊線不平行,紙帶②的邊線平行 D. 紙帶①、②的邊線都不平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把代數(shù)式通過配湊等手段,得到局部完全平方式,再進(jìn)行有關(guān)運(yùn)算和解題,這種解題方法叫做配方法,例如:
①用配方法分解因式:
.
解:原式![]()
②
,利用配方法求
的最小值.
解:![]()
∵
,![]()
∴當(dāng)
時(shí),
有最小值1.
請(qǐng)根據(jù)上述材料解決下列問題:
(1)在橫線上添加一個(gè)常數(shù),使之成為完全平方式:
________.
(2)用配方法因式分解:
.
(3)若
,求
的最小值.
(4)已知
,則
的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B在數(shù)軸上分別表示a,b.
(1)對(duì)照數(shù)軸填寫下表:
a | 6 | -6 | -6 | -6 | 2 | -1.5 |
b | 4 | 0 | 4 | -4 | -10 | -1.5 |
A、B兩點(diǎn)的距離 |
(2)若A、B兩點(diǎn)間的距離記為d,試問:d和a,b有何數(shù)量關(guān)系?
(3)在數(shù)軸上找出所有符合條件的整數(shù)點(diǎn)P,使它到5和-5的距離之和為10,并求所有這些整數(shù)的和;
(4)若點(diǎn)C表示的數(shù)為x,當(dāng)點(diǎn)C在什么位置時(shí),
取得的值最小? 最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過坐標(biāo)原點(diǎn),并與x軸交于點(diǎn)A(2,0).![]()
(1)求此拋物線的解析式;
(2)寫出頂點(diǎn)坐標(biāo)及對(duì)稱軸;
(3)若拋物線上有一點(diǎn)B,且S△OAB=3,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是半徑為
的⊙
的直徑,
是圓上異于
,
的任意一點(diǎn),
的平分線交⊙
于點(diǎn)
,連接
和
,△
的中位線所在的直線與⊙
相交于點(diǎn)
、
,則
的長是.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是二元一次方程組的不同解法,請(qǐng)你把下列消元的過程填寫完整:
對(duì)于二元一次方程組 ![]()
(1)方法一:由
,得
把
代入
,得________________.
(2)方法二:
,得![]()
,得________________.
(3)方法三:
,得
,得________________.
(4)方法四:由
,得
⑥
把
代入⑥,得________________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com