【題目】某單位N名員工參加“社區低碳你我他”活動.他們的年齡在25歲至50歲之間.按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.下表是年齡的頻率分布表.
![]()
區間 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人數 | 25 | a | b | ||
(1)求正整數a,b,N的值;
(2)現要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數分別是
多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區宣傳交流活動,求恰有1人在第3組的概率.
【答案】(1)25,100,250; (2)1人,1人,4人; (3)
.
【解析】
⑴根據頻率分布直方圖的意義并結合表格內的已知數可以求得
,
,![]()
⑵先求出這三組的總人數,根據分層抽樣的取樣方法求得每組取樣的人數
⑶利用列舉法列出所有的組合方式共有
種,其中滿足條件的組合有
種,利用古典概型概率公式求得結果
(1)由頻率分布直方圖可知,[25,30)與[30,35)兩組的人數相同,所以
.
且
總人數![]()
(2)因為第1,2,3組共有
人,利用分層抽樣在150名員工中抽取6人,每組抽取的人數分別為:
第1組的人數為
, 第2組的人數為
,第3組的人數為
,
所以第1,2,3組分別抽取1人,1人,4人.
(3)由(2)可設第1組的1人為
,第2組的1人為
,第3組的4人分別為
,
,
,
則從6人中抽取2人的所有可能結果為:
,
,
,
,
,
,
,
,
,
,
,
,
,
共有15種.其中恰有1人年齡在第3組的所有結果為:
,
,
,
,
,
,
,
,共有8種.
所以恰有1人年齡在第3組的概率為
.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱
中,
平面
,
為
邊上一點,
,
.
![]()
(1)證明:平面
平面
.
(2)若
,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為實現國民經濟新“三步走”的發展戰略目標,國家加大了扶貧攻堅的力度,某地區在2015年以前的年均脫貧率(脫貧的戶數占當年貧困戶總數的比)為70%,2015年開始全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加戶數占2019年貧困總戶數的比)及該項目的脫貧率見下表:
實施項目 | 種植業 | 養殖業 | 工廠就業 |
參加占戶比 | 45% | 45% | 10% |
脫貧率 | 96% | 96% | 90% |
那么2019年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的( )倍.
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】垃圾分類,是指按一定規定或標準將垃圾分類儲存、分類投放和分類搬運,從而轉變成公共資源的一系列活動的總稱.分類的目的是提高垃圾的資源價值和經濟價值,力爭物盡其用.2019年6月25日,生活垃圾分類制度入法.到2020年底,先行先試的46個重點城市,要基本建成垃圾分類處理系統;其他地級城市實現公共機構生活垃圾分類全覆蓋.某機構欲組建一個有關“垃圾分類”相關事宜的項目組,對各個地區“垃圾分類”的處理模式進行相關報道.該機構從600名員工中進行篩選,篩選方法:每位員工測試
,
,
三項工作,3項測試中至少2項測試“不合格”的員工,將被認定為“暫定”,有且只有一項測試“不合格”的員工將再測試
,
兩項,如果這兩項中有1項以上(含1項)測試“不合格”,將也被認定為“暫定”,每位員工測試
,
,
三項工作相互獨立,每一項測試“不合格”的概率均為
.
(1)記某位員工被認定為“暫定”的概率為
,求
;
(2)每位員工不需要重新測試的費用為90元,需要重新測試的總費用為150元,除測試費用外,其他費用總計為1萬元,若該機構的預算為8萬元,且該600名員工全部參與測試,問上述方案是否會超過預算?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知
為拋物線
上一點,斜率分別為
,![]()
的直線PA,PB分別交拋物線于點A,B(不與點P重合).
![]()
(1)證明:直線AB的斜率為定值;
(2)若△ABP的內切圓半徑為
.
(i)求△ABP的周長(用k表示);
(ii)求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著互聯網金融的不斷發展,很多互聯網公司推出余額增值服務產品和活期資金管理服務產品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調查廣大市民理財產品的選擇情況,隨機抽取1100名使用理財產品的市民,按照使用理財產品的情況統計得到如下頻數分布表:
分組 | 頻數(單位:名) |
使用“余額寶” |
|
使用“財富通” |
|
使用“京東小金庫” | 40 |
使用其他理財產品 | 60 |
合計 | 1100 |
已知這1100名市民中,使用“余額寶”的人比使用“財富通”的人多200名.
(1)求頻數分布表中
,
的值;
(2)已知2018年“余額寶”的平均年化收益率為
,“財富通”的平均年化收益率為
,“京東小金庫”的平均年化收益率為
,有3名市民,每個人理財的資金有10000元,且分別存入“余額寶”“財富通”“京東小金庫”,求這3名市民2018年理財的平均年化收益率;
(3)若在1100名使用理財產品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取5人,然后從這5人中隨機選取2人,求“這2人都使用‘財富通’”的概率.
注:平均年化收益率,也就是我們所熟知的利率,理財產品“平均年化收益率為
”即將100元錢存入某理財產品,一年可以獲得3元利息.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
分別為橢圓
的左、右焦點,
為該橢圓的一條垂直于
軸的動弦,直線
與
軸交于點
,直線
與直線
的交點為
.
(1)證明:點
恒在橢圓
上.
(2)設直線
與橢圓
只有一個公共點
,直線
與直線
相交于點
,在平面內是否存在定點
,使得
恒成立?若存在,求出該點坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com