【題目】如圖,在四棱錐
中,
,
,
,
為等邊三角形,且平面
平面
,
為
中點(diǎn).
![]()
(1)求證:
平面
;
(2)求二面角
的正弦值.
【答案】(1)證明見解析;(2)
.
【解析】
(1)可證
平面
,從而得到要證的線面垂直;
(2)過點(diǎn)
作
的垂線
,交
于點(diǎn)
,連結(jié)
,可證二面角
的平面角為
,利用余弦定理可求其余弦值后可得其正弦值.我們也可以建立如圖所示的空間直角坐標(biāo)系,求出平面
的法向量和平面
的法向量后可求它們的夾角的余弦值,從而得到二面角的正弦值.
(1)證明:因?yàn)?/span>
,
,
所以
,
又∵平面
平面
,且平面
平面
,
平面
,
∴
平面
,又∵
平面
,∴ 所以
,
∵
為
中點(diǎn),且
為等邊三角形,∴
,又∵
,
∴
平面
.
(2)【法一】過點(diǎn)
作
的垂線
,交
于點(diǎn)
,連結(jié)
,
取
中點(diǎn)為
,連接
.
因?yàn)?/span>
為等邊三角形,所以
,
由平面
平面
,
平面
,平面
平面
,
所以
平面
,
平面
,所以
,由條件知
,
又
,所以
平面
,
又
平面
,所以
,
又
,所以
,
所以
,
由二面角的定義知,二面角
的平面角為
,
在
中,
,
由
,所以
,
![]()
同理可得
,
又
,在
中,
,
所以,二面角
的正弦值為
.
【法二】
取
中點(diǎn)為
,連接
,因?yàn)?/span>
為等邊三角形,所以
,
由平面
平面
,
平面
,平面
平面
,
所以
平面
,
所以
,由
,
,
可知
,所以
,
以
中點(diǎn)
為坐標(biāo)原點(diǎn),
所在直線為
軸,建立如圖所示的空間直角坐標(biāo)系
,
![]()
所以
,
,
所以
,
由(1)知,可以
為平面
的法向量,
因?yàn)?/span>
為
的中點(diǎn),
所以
,
由(1)知,平面
的一個(gè)法向量為
,
設(shè)平面
的法向量為
,
由
得
,
取
,則
,
所以
,
所以二面角
的正弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
機(jī)床甲 | 8 | 12 | 40 | 32 | 8 |
機(jī)床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的日利潤(rùn)(單位:元);
(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠一種溶液的成品,生產(chǎn)過程的最后工序是過濾溶液中的雜質(zhì),過濾初期溶液含雜質(zhì)為2%,每經(jīng)過一次過濾均可使溶液雜質(zhì)含量減少
,記過濾次數(shù)為x(
)時(shí)溶液雜質(zhì)含量為y.
(1)寫出y與x的函數(shù)關(guān)系式;
(2)按市場(chǎng)要求,出廠成品雜質(zhì)含量不能超過0.1%,問至少經(jīng)過幾次過濾才能使產(chǎn)品達(dá)到市場(chǎng)要求?(參考數(shù)據(jù):
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知
,
為橢圓
的左、右頂點(diǎn),
為其右焦點(diǎn),
是橢圓
上異于
,
的動(dòng)點(diǎn),且
面積的最大值為
.
(Ⅰ)求橢圓
的方程及離心率;
(Ⅱ)直線
與橢圓在點(diǎn)
處的切線交于點(diǎn)
,當(dāng)直線
繞點(diǎn)
轉(zhuǎn)動(dòng)時(shí),試判斷以![]()
為直徑的圓與直線
的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,其中左焦點(diǎn)
(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,函數(shù)
,
,其中
為常數(shù),且
,令函數(shù)
為函數(shù)
和
的積函數(shù).
(1)求函數(shù)
的表達(dá)式,并求其定義域;
(2)當(dāng)
時(shí),求函數(shù)
的值域
(3)是否存在自然數(shù)
,使得函數(shù)
的值域恰好為
?若存在,試寫出所有滿足條件的自然數(shù)
所構(gòu)成的集合;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
![]()
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
(a>b>0)的離心率
,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
.
![]()
(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為矩形,平面
平面
,
.
![]()
(1)證明:平面
平面
;
(2)若
,
為棱
的中點(diǎn),
,
,求四面體
的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com