設f1(x)=
,定義fn+1(x)=f1[fn(x)],an=
(n∈N*).
(1)求數列{an}的通項公式;
(2)若T2n=a1+2a2+3a3+…+2na2n,,Qn=
(n∈N*),試比較9T2n與Qn的大小,并說明理由.
|
解:(1)∵f1(0)=2,a1= ∴an+1= ∴數列{an}是首項為 (2)∵T2 n = a1+2a 2+3a 3+…+(2n-1)a 2 n- 1+2na 2 n, ∴ 兩式相減,得 ∴ T2n = ∴9T2n=1- 又Qn=1- 當n=1時,22 n=4,(2n+1)2=9,∴9T2 n<Qn; 當n=2時,22 n=16,(2n+1)2=25,∴9T2 n<Qn; 當n≥3時, ∴9T2 n>Qn. |
科目:高中數學 來源:河北省正定中學2010屆高三上學期期中考試數學理科試題 題型:013
設f1(x)=|x-1|,f2(x)=-x2+6x-5,函數g(x)是這樣定義的:當f1(x)≥f2(x)時,g(x)=f1(x);當f1(x)<f2(x)時,g(x)=f2(x),若方程g(x)=a有四個不同的實數解,則實數a的取值范圍是
3<a<4
0<a<4
0<a<3
a<4
查看答案和解析>>
科目:高中數學 來源:河北省正定中學2010屆高三上學期期中考試數學文科試題 題型:013
設f1(x)=|x-1|,f2(x)=-x2+6x-5,函數g(x)是這樣定義的:當f1(x)≥f2(x)時,g(x)=f1(x);當f1(x)<f2(x)時,g(x)=f2(x),若方程g(x)=a有四個不同的實數解,則實數a的取值范圍是
3<a<4
0<a<4
0<a<3
a<4
查看答案和解析>>
科目:高中數學 來源:北京市海淀區2007-2008學年度高三年級第一學期期中練習、數學試題(理科) 題型:044
設函數f(x)的定義域為R,若|f(x)|≤|x|對一切實數x均成立,則稱函數f(x)為Ω函數.
(I)試判斷函數f1(x)=xsinx、
和
中哪些是Ω函數,并說明理由;
(II)若函數y=f(x)是定義在R上的奇函數,且滿足對一切實數x1、x2,均有|f(x1)-f(x2)|≤|x1-x2|,求證:函數f(x)一定是Ω函數;
(III)求證:若a>1,則函數f(x)=ln(x2+a)-lna是Ω函數.
查看答案和解析>>
科目:高中數學 來源:北京市海淀區2008-2009學年度高三年級第一學期期中練習數學試卷(理) 題型:044
設f(x)是定義在D上的函數,若對任何實數α∈(0,1)以及D中的任意兩數x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數.
(1)試判斷函數f1(x)=x2,
中哪些是各自定義域上的C函數,并說明理由;
(2)已知f(x)是R上的C函數,m是給定的正整數,設an=f(n),n=0,1,2…,m,且a0=0,am=2m,記Sf=a1+a2+…+am.對于滿足條件的任意函數f(x),試求Sf的最大值;
(3)若f(x)是定義域為R的函數,且最小正周期為T,試證明f(x)不是R上的C函數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com