【題目】【2018貴州遵義市高三上學(xué)期第二次聯(lián)考】設(shè)拋物線
的準(zhǔn)線與
軸交于
,拋物線的焦點(diǎn)為
,以
為焦點(diǎn),離心率
的橢圓與拋物線的一個交點(diǎn)為
;自
引直線交拋物線于
兩個不同的點(diǎn),設(shè)
.
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若
,求
的取值范圍.
【答案】(Ⅰ)橢圓的方程為
;拋物線的方程是:
.(Ⅱ)
.
【解析】試題分析:
(Ⅰ) 設(shè)橢圓的標(biāo)準(zhǔn)方程為
,根據(jù)橢圓上的點(diǎn)及離心率可得關(guān)于
的方程組,求得
可得橢圓的方程;根據(jù)橢圓的焦點(diǎn)坐標(biāo)可得
,進(jìn)而可得拋物線方程.(Ⅱ)設(shè)出直線
的方程,與橢圓方程聯(lián)立消元后根據(jù)根與系數(shù)的關(guān)系及弦長公式可得
,再根據(jù)
的范圍,利用函數(shù)的有關(guān)知識求得
的范圍即可.
試題解析:
(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為
,
由題意得
,解得
,
∴橢圓的方程為
,
∴點(diǎn)
的坐標(biāo)為
,
∴
,
∴拋物線的方程是
.
(Ⅱ)由題意得直線
的斜率存在,設(shè)其方程為
,
由
消去x整理得
(*)
∵直線
與拋物線交于兩點(diǎn),
∴
.
設(shè)
,
,
則
①,
②.
∵
,
,
∴![]()
∴
.③
由①②③消去
得:
.
∴
![]()
,即
,
將
代入上式得
,
∵
單調(diào)遞減,
∴
,即
,
∴
,
∴
,
即
的求值范圍為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點(diǎn).
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點(diǎn),求三棱錐AEBC的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A、B兩地區(qū)分別隨機(jī)調(diào)查了20個用戶,得到用戶對產(chǎn)品的滿意度評分如下:
A地區(qū): | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地區(qū): | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):
![]()
(Ⅱ)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
記事件C:“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級”,假設(shè)兩地區(qū)用戶的評價結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為梯形,平面
平面
![]()
為側(cè)棱
的中點(diǎn),且
.
![]()
(1)證明:
平面
;
(2)若點(diǎn)
到平面
的距離為
,且
,求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為坐標(biāo)原點(diǎn),拋物線
上在第一象限內(nèi)的點(diǎn)
到焦點(diǎn)的距離為
,曲線
在點(diǎn)
處的切線交
軸于點(diǎn)
,直線
經(jīng)過點(diǎn)
且垂直于
軸.
(Ⅰ)求
點(diǎn)的坐標(biāo);
(Ⅱ)設(shè)不經(jīng)過點(diǎn)
和
的動直線
交曲線
于點(diǎn)
和
,交
于點(diǎn)
,若直線
,
,
的斜率依次成等差數(shù)列,試問:
是否過定點(diǎn)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
的底面
是邊長為2的菱形,
.已知
,
.
(Ⅰ)證明:
;
(Ⅱ)若
為
上一點(diǎn),記三棱錐
的體積和四棱錐
的體積分別為
和
,當(dāng)
時,求
的值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
在橢圓
上,且橢圓的離心率為
.
(1)求橢圓
的方程;
(2)若
為橢圓
的右頂點(diǎn),點(diǎn)
是橢圓
上不同的兩點(diǎn)(均異于
)且滿足直線
與
斜率之積為
.試判斷直線
是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
為拋物線
的焦點(diǎn),點(diǎn)
為點(diǎn)
關(guān)于原點(diǎn)的對稱點(diǎn),點(diǎn)
在拋物線
上,則下列說法錯誤的是( )
A. 使得
為等腰三角形的點(diǎn)
有且僅有4個
B. 使得
為直角三角形的點(diǎn)
有且僅有4個
C. 使得
的點(diǎn)
有且僅有4個
D. 使得
的點(diǎn)
有且僅有4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)為
,過拋物線
上的動點(diǎn)
(除頂點(diǎn)
外)作
的切線
交
軸于點(diǎn)
.過點(diǎn)
作直線
的垂線
(垂足為
)與直線
交于點(diǎn)
.
(Ⅰ)求焦點(diǎn)
的坐標(biāo);
(Ⅱ)求證:
;
(Ⅲ)求線段
的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com