【題目】設函數
的定義域為
,如果存在正實數
,使得對任意
,都有
,且
恒成立,則稱函數
為
上的“
的型增函數”,已知
是定義在
上的奇函數,且在
時,
,若
為
上的“2017的型增函數”,則實數
的取值范圍是__________.
【答案】![]()
【解析】∵f(x)是定義在R上的奇函數,且當x>0時,f(x)=|xa|2a,
∴
,
又f(x)為R上的“2017型增函數”,
(1)當x>0時,由定義有|x+2017a|2a>|xa|2a,
即|x+2017a|>|xa|,其幾何意義為到點a小于到點a2017的距離,
由于x>0,故可知a+a2017<0得![]()
當x<0時,
①若x+2017<0,則有|x+2017+a|+2a>|x+a|+2a,
即|x+a|>|x+2017+a|,其幾何意義表示到點a的距離小于到點a2017的距離,
由于x<0,故可得aa2017>0,得
;
②若x+2017>0,則有|x+2017a|2a>|x+a|+2a,
即|x+a|+|x+2017a|>4a,其幾何意義表示到到點a的距離與到點a2017的距離的和大于4a,
(2)當a0時,顯然成立,當a>0時,由于|x+a|+|x+2017+a||aa+2017|=|2a2017|,
故有|2a2017|>4a,必有20172a>4a,解得
,
綜上,對x∈R都成立的實數a的取值范圍是
,即
.
科目:高中數學 來源: 題型:
【題目】某企業有甲、乙兩套設備生產同一種產品,為了檢測兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在
內,則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數分布表,圖1是乙套設備的樣本的頻率分布直方圖.
表1:甲套設備的樣本的頻數分布表
質量指標值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數 | 1 | 5 | 18 | 19 | 6 | 1 |
圖1:乙套設備的樣本的頻率分布直方圖
![]()
(Ⅰ)將頻率視為概率. 若乙套設備生產了5000件產品,則其中的不合格品約有多少件;
(Ⅱ)填寫下面列聯表,并根據列聯表判斷是否有90%的把握認為該企業生產的這種產品的質量指標值與甲、乙兩套設備的選擇有關;
甲套設備 | 乙套設備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(Ⅲ)根據表1和圖1,對兩套設備的優劣進行比較.
附:
![]()
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x,g(x)=x2+ax(其中a∈R).對于不相等的實數x1,x2,設m=
,n=
,現有如下命題:
①對于任意不相等的實數x1,x2,都有m>0;
②對于任意的a及任意不相等的實數x1,x2,都有n>0;
③對于任意的a,存在不相等的實數x1,x2,使得m=n;
④對于任意的a,存在不相等的實數x1,x2,使得m=-n.
其中真命題有___________________(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如下圖,已知點
是離心率為
的橢圓
:
上的一點,斜率為
的直線
交橢圓
于
、
兩點,且
、
、
三點互不重合.
![]()
(1)求橢圓
的方程;
(2)求證:直線
,
的斜率之和為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在
市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為
市使用共享單車情況與年齡有關?
(2)現從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經常使用、偶爾或不用共享單車的人數;
(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式:
,其中
.
參考數據:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將2張邊長均為1分米的正方形紙片分別按甲、乙兩種方式剪裁并廢棄陰影部分.
(1)在圖甲的方式下,剩余部分恰能完全覆蓋某圓錐的表面,求該圓錐的母線長及底面
半徑;
(2)在圖乙的方式下,剩余部分能完全覆蓋一個長方體的表面,求長方體體積的最大值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x(1-
)是R上的偶函數.
(1)對任意的x∈[1,2],不等式m·
≥2x+1恒成立,求實數m的取值范圍.
(2)令g(x)=1-
,設函數F(x)=g(4x-n)-g(2x+1-3)有零點,求實數n的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,以坐標原點
為極點,
軸的正半軸為極軸,建立極坐標系,已知直線
的參數方程為
(
為參數),曲線
的極坐標方程是
.
(1)寫出直線
的普通方程和曲線
的直角坐標方程;
(2)設直線
與曲線
相交于
兩點,點
為
的中點,點
的極坐標為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com