【題目】某食品集團生產的火腿按行業生產標準分成8個等級,等級系數
依次為1,2,3,…,8,其中
為標準
,
為標準
.已知甲車間執行標準
,乙車間執行標準
生產該產品,且兩個車間的產品都符合相應的執行標準.
(1)已知甲車間的等級系數
的概率分布列如下表,若
的數學期望E(X1)=6.4,求
,
的值;
X1 | 5 | 6 | 7 | 8 |
P | 0.2 |
|
|
|
(2)為了分析乙車間的等級系數
,從該車間生產的火腿中隨機抽取30根,相應的等級系數組成一個樣本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用該樣本的頻率分布估計總體,將頻率視為概率,求等級系數
的概率分布列和均值;
(3)從乙車間中隨機抽取5根火腿,利用(2)的結果推斷恰好有三根火腿能達到標準
的概率.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,拋物線
的頂點是原點,以
軸為對稱軸,且經過點
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)設點
,
在拋物線
上,直線
,
分別與
軸交于點
,
,
.求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校倡導為特困學生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現統計了連續5天的售出礦泉水箱數和收入情況,列表如下:
售出水量 | 7 | 6 | 6 | 5 | 6 |
收入 | 165 | 142 | 148 | 125 | 150 |
學校計劃將捐款以獎學金的形式獎勵給品學兼優的特困生,規定:特困生綜合考核前20名,獲一等獎學金500元;綜合考核21-50名,獲二等獎學金300元;綜合考核50名以后的不獲得獎學金.
(1)若
與
成線性相關,則某天售出9箱水時,預計收入為多少元?
(2)甲乙兩名學生獲一等獎學金的概率均為
,獲二等獎學金的概率均為
,不獲得獎學金的概率均為
,已知甲乙兩名學生獲得哪個等級的獎學金相互獨立,求甲乙兩名學生所獲得獎學金之和
的分布列及數學期望;
附:回歸方程
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱臺被過點
的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形
是邊長為2的菱形,
,
平面
,
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)若
與底面
所成角的正切值為2,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,
、
分別為橢圓
的左、右頂點,點
滿足
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設直線
經過點
且與
交于不同的兩點
、
,試問:在
軸上是否存在點
,使得直線
與直線
的斜率的和為定值?若存在,請求出點
的坐標及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的參數方程為
(
為參數,
),以原點
為極點,
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
與
的直角坐標方程;
(2)當
與
有兩個公共點時,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點
到定點
的距離比
到定直線
的距離小1.
(Ⅰ)求點
的軌跡
的方程;
(Ⅱ)過點
任意作互相垂直的兩條直線
,分別交曲線
于點
和
.設線段
,
的中點分別為
,求證:直線
恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求
面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com